Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1812-1826.DOI: 10.16085/j.issn.1000-6613.2020-0830
• Column: Advanced chemical equipment and intelligent systems engineering • Previous Articles Next Articles
BIAN Jiang(), CAO Xuewen(), SUN Wenjuan, YANG Wen, JIANG Wenming
Received:
2020-05-15
Online:
2021-04-14
Published:
2021-04-05
Contact:
CAO Xuewen
通讯作者:
曹学文
作者简介:
边江(1992—),男,博士研究生,主要从事天然气处理与加工技术等方面的研究工作。E-mail:基金资助:
CLC Number:
BIAN Jiang, CAO Xuewen, SUN Wenjuan, YANG Wen, JIANG Wenming. A review on condensation and swirl separation of supersonic gas[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1812-1826.
边江, 曹学文, 孙文娟, 杨文, 蒋文明. 气体超声速凝结与旋流分离研究进展[J]. 化工进展, 2021, 40(4): 1812-1826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0830
图6 凝结参数光学测试系统测量原理[18]
null1 | FARAMAWY S, ZAKI T, SAKR A A E. Natural gas origin, composition, and processing: a review[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 34-54. |
2 | GARRETT R L, OEHLSCHLAGER W K, TOMICH J F. Vapor-liquid separation at supersonic velocities[J]. Journal of Engineering for Industry, 1968, 90(4): 609. |
3 | KONTT T. Supersonic twister chills out[J]. Offshore Engineer, 2000, 25(7): 2-3. |
4 | HAGHIGHI M, HAWBOLDT K A, ABDI M A. Supersonic gas separators: review of latest developments[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 109-121. |
5 | 韩中合, 赵豫晋, 肖坤玉, 等. 新型超音速旋流分离器流场分析与性能评估[J]. 化工进展, 2016, 35(9): 2715-2720. |
HAN Z H, ZHAO Y J, XIAO K Y, et al. Flow field analysis and performance evaluation on new supersonic swirling separator[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2715-2720. | |
6 | OKIMOTO F T, BROUWER J M. Supersonic gas conditioning[J]. World Oil, 2002, 223(8): 89-91. |
7 | ALFYOROV V I, BAGIROV L A, DMITRIEV L, et al. Supersonic nozzle efficiently separates natural gas components[J]. Oil Gas Journal, 2005, 103(20): 53-58. |
8 | SCHINKELSHOEK P, EPSOM H. Supersonic gas conditioning-low pressure drop TWISTER™ for NGL recovery[C]//The 2006 Offshore Technology Conference, Houston, 2006. |
9 | VOLMER M, WEBER A. Nuclei formation in supersaturated states[J]. Zeitschrift fur Physikalische Chemie, 1926, 119: 277-301. |
10 | BECKER R, DÖRING W. The kinetic treatment of nuclear formation in supersaturated vapors[J]. Annals of Physics, 1935, 24: 719-752. |
11 | ZELDOVICH Y B. Theory of the formation of a new phase cavitations[J]. Journal of Experimental and Theoretical Physics, 1942, 12: 525-526. |
12 | LOTHE J, POUND G M. Reconsiderations of nucleation theory[J]. The Journal of Chemical Physics, 1962, 36(8): 2080-2085. |
13 | REISS H, KATZ J L, COHEN E R. Translation-rotation paradox in the theory of nucleation[J]. The Journal of Chemical Physics, 1968, 48(12): 5553-5560. |
14 | REISS H. Treatment of droplike clusters by means of the classical phase integral in nucleation theory[J]. Journal of Statistical Physics, 1970, 2(1): 83-104. |
15 | RUTH V, HIRTH J P, POUND G M. On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase[J]. The Journal of Chemical Physics, 1988, 88: 7079-7087. |
16 | GIRSHICK S L, CHIU C P. Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor[J]. The Journal of Chemical Physics, 1990, 93(2): 1273-1277. |
17 | GIRSHICK S L. Comment on: self-consistency correction to homogeneous nucleation theory[J]. The Journal of Chemical Physics, 1991, 94(1): 826-827. |
18 | LAMANNA G. On nucleation and droplet growth in condensing nozzle flows[D]. Netherlands: Eindhoven University of Technology, 2000. |
19 | DILLMANN A, MEIER G E A. Homogeneous nucleation of supersaturated vapors[J]. Chemical Physics Letters, 1989, 160(1): 71-74. |
20 | DILLMANN A, MEIER G E A. A refined droplet approach to the problem of homogeneous nucleation from the vapor phase[J]. The Journal of Chemical Physics, 1991, 94(5): 3872-3884. |
21 | FORD I J, LAAKSONEN A, KULMALA M. Modification of the Dillmann—Meier theory of homogeneous nucleation[J]. The Journal of Chemical Physics, 1993, 99: 764-765. |
22 | LAAKSONEN A, FORD I J, KULMALA M. Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation[J]. Physical Review E, 1994, 49(6): 5517-5524. |
23 | KALIKMANOV V I, DONGEN M E H VAN. Cluster approach to the kinetic theory of homogeneous nucleation[J]. Europhysics Letters, 1993, 21(6): 645-650. |
24 | KALIKMANOV V I, DONGEN M E H VAN. Self-consistent cluster approach to the homogeneous kinetic nucleation theory[J]. Physical Review E, 1993, 47(5): 3532-3539. |
25 | KANTROWITZ A. Nucleation in very rapid vapor expansions[J]. The Journal of Chemical Physics, 1951, 19(9): 1097-1100. |
26 | 刘恒伟, 刘中良, 冯永训, 等. 过饱和状态下临界液滴半径公式及分析[J]. 热能动力工程, 2005, 20(3): 255-257, 274. |
LIU H W, LIU Z L, FENG Y X, et al. Derivation of a formula for calculating the critical radius of a spherical liquid droplet and its analysis[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(3): 255-257, 274. | |
27 | 杨文, 侯志强, 陈鹏, 等. 双组分气体自发凝结成核模型修正[J]. 石油学报(石油加工), 2017, 33(2):273-280. |
YANG W, HOU Z Q, CHEN P, et al. Modification of models for binary component vapor spontaneous nucleation[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(2): 273-280. | |
28 | 张国杰. 基于修正模型的非平衡凝结流动数值研究[D]. 徐州: 中国矿业大学, 2018. |
ZHANG G J. Numerical study of non-equilibrium condensing flow based on the modified model[D]. Xuzhou: China University of Mining and Technology, 2018. | |
29 | OSWATITSCH K. Kondensationserscheinungen in überschalldüsen[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1942, 22(1): 1-14. |
30 | GYARMATHY G. Grundlagen einer theorie der nassdampfturbine[D]. Zürich: Eidgenoessische Technische Hochschule Zuerich, 1962. |
31 | GYARMATHY G. The spherical droplet in gaseous carrier streams: review and synthesis[J]. Multiphase Science and Technology, 1982, 1(4): 99-279. |
32 | YOUNG J B. The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number[J]. International Journal of Heat and Mass Transfer, 1991, 34(7): 1649-1661. |
33 | YOUNG J B. The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas[J]. International Journal of Heat and Mass Transfer, 1993, 36(11): 2941-2956. |
34 | SENOO S, SHIKANO Y. Two-dimensional analysis for non-equilibrium homogeneously condensing flows through steam turbine cascade[J]. Japan Society of Mechanical Engineers, 2002, 45(4): 865-871. |
35 | 韩中合, 陈柏旺, 刘刚, 等. 湿蒸汽两相凝结流动中水滴生长模型研究[J]. 中国电机工程学报, 2011, 31(29):79-84. |
HAN Z H, CHEN B W, LIU G, et al. Droplets growth model in wet steam two-phase condensation flow[J]. Proceedings of the CSEE, 2011, 31(29):79-84. | |
36 | RUDEK M M, FISK J A, CHAKAROV V M, et al. Condensation of a supersaturated vapor. Ⅻ. The homogeneous nucleation of the n-alkanes[J]. The Journal of Chemical Physics, 1996, 105(11): 4707-4713. |
37 | LUIJTEN C C M, PEETERS P, DONGEN M E H VAN. Nucleation at high pressure. Ⅱ. Wave tube data and analysis[J]. Journal of Chemical Physics, 1999, 111(18): 8535-8544. |
38 | 程万. 伴随凝结的无粘可压缩流动研究[D]. 合肥: 中国科学技术大学, 2011. |
CHENG W. On inviscid compressible flows with condensation[D]. Hefei: University of Science and Technology of China, 2011. | |
39 | PEETER S P, LUIJTEN C C M, DONGEN M E H VAN. Transitional droplet growth and diffusion coefficients[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 181-193. |
40 | YELLOTT J I. Supersaturated steam[D]. USA: Johns Hopkins University, 1933. |
41 | PRANDTL L. General considerations on the flow of compressible fluids[C]//Volta Meeting, 1935. |
42 | MOSES C A, STEIN G D. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements[J]. Journal of Fluids Engineering, 1978, 100(3): 311-322. |
43 | WYSLOUZIL B E, CHEUNG J L, WILEMSKI G, et al. Small angle neutron scattering from nanodroplet aerosols[J]. Physical Review Letters, 1997, 79(3): 431-434. |
44 | WYSLOUZIL B E, HEATH C H, CHEUNG J L, et al. Binary condensation in a supersonic nozzle[J]. The Journal of Chemical Physics, 2000, 113(17): 7317-7329. |
45 | BHABHE A, WYSLOUZIL B E. Nitrogen nucleation in a cryogenic supersonic nozzle[J]. The Journal of Chemical Physics, 2011, 135(24): 244311. |
46 | PATHAK H N. Nucleation and droplet growth during co-condensation of nonane and D2O in a supersonic nozzle[D]. USA: The Ohio State University, 2013. |
47 | GHOSH D, MANKA A, STREY R, et al. Using small angle X-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions[J]. The Journal of Chemical Physics, 2008, 129(12): 124302-124314. |
48 | GHOSH D, BERGMANN D, SCHWERING R, et al. Homogeneous nucleation of a homologous series of n-alkanes (CiH2i+2, i=7~10) in a supersonic nozzle[J]. The Journal of Chemical Physics, 2010, 132(2): 024307-024317. |
49 | 徐廷相, 黄跃. 过饱和水蒸气自发凝结现象实验装置的研制及实际流动Wilson点位置的确定[J]. 西安交通大学学报, 1984, 4(4):56-68. |
XU T X, HUANG Y. The development of an experimental apparatus to study the spontaneous condensation phenomena of the supersaturated steam and the method of defining Wilson point of the real steam flow[J]. Journal of Xi'an Jiaotong University, 1984, 4(4):56-68. | |
50 | 蔡小舒, 苏明旭, 沈建琪, 等. 颗粒粒度测量技术及应用[M]. 北京: 化学工业出版社, 2010. |
CAI X S, SU M X, SHEN J Q, et al. Particle size measurement technology and application[M]. Beijing: Chemical Industry Press, 2010. | |
51 | 蒋文明. 多组分凝结性超音速流传热传质理论及实验研究[D]. 北京: 北京工业大学, 2010. |
JIANG W M. A theoretical and experimental study of heat and mass transfer characteristics of multi-component condensing gas supersonic flows[D]. Beijing: Beijing University of Technology, 2010. | |
52 | 杨文. 天然气高速膨胀凝结相变特性研究[D]. 青岛: 中国石油大学(华东), 2016. |
YANG W. Condensation characterstics of natural gas in high speed expansion[D]. Qingdao: China University of Petroleum (East China), 2016. | |
53 | WÖLK J, STREY R. Homogeneous nucleation of H2O and D2O in comparison: the isotope effect[J]. The Journal of Physical Chemistry B, 2001, 105(47): 11683-11701. |
54 | LOOIJMANS K N H, DONGEN M E H VAN. Pulse-expansion wave tube for nucleation studies at high pressures[J]. Experiments in Fluids. 1997, 1(23): 54-63. |
55 | LUIJTEN C C M. Nucleation and droplet growth at high pressure[D]. Netherlands: Eindhoven University of Technology, 1998. |
56 | PEETERS P, PIETERSE G, HRUBÝ J, et al. Multi-component droplet growth. Ⅰ. Experiments with supersaturated n-nonane vapor and water vapor in methane[J]. Physics of Fluids, 2004, 16(7):2567-2574. |
57 | PEETERS P, PIETERSE G, DONGEN M E H VAN. Multi-component droplet growth. Ⅱ. A theoretical model[J]. Physics of Fluids, 2004, 7(16): 2575-2586. |
58 | WAGNER P E, STREY R. Two-pathway homogeneous nucleation in supersaturated water-n-nonane vapor mixtures[J]. Journal of Physical Chemistry B, 2001, 105 (47): 11656-11661. |
59 | HILL P G. Condensation of water vapour during supersonic expansion in nozzles[J]. Journal of Fluid Mechanics, 1966, 25(3): 593-620. |
60 | 俞茂铮, 陈孝隆. 存在自发凝结的超音速湿蒸汽双相流[J]. 西安交通大学学报, 1983, 17(1): 23-32. |
YU M Z, CHEN X L. Supersonic two-phase wet-steam flow in the presence of spontaneous condensation[J]. Journal of Xi'an Jiaotong University, 1983, 17(1): 23-32. | |
61 | 黄跃, 蔡颐年. 膨胀率对拉伐尔喷管超音速湿蒸汽流动凝结过程的影响[J]. 西安交通大学学报, 1984, 18(2): 51-61. |
HUANG Y, CAI Y N. The effect of rate of expansion on the condensation of supersonic wet steam flow in a Laval nozzle[J]. Journal of Xi’an Jiaotong University, 1984, 18(2): 51-61. | |
62 | 韩中合, 王智, 杨昆, 等. 膨胀率对湿蒸汽自发凝结流动影响的数值分析[J]. 华北电力大学学报, 2004, 31(2):36-39. |
HAN Z H, WANG Z, YANG K, et al. Numerical simulation of expansion rate on two-phase wet steam flow with spontaneous condensation[J]. Journal of North China Electric Power University, 2004, 31(2): 36-39. | |
63 | MATSUO S, SETOGUCHI T, YU S, et al. Effect of nonequilibrium condensation of moist air on the boundary layer in a supersonic nozzle[J]. Journal of Thermal Science, 1997, 6(4): 260-272. |
64 | SIMPSON D A, WHITE A J. Viscous and unsteady flow calculations of condensing steam in nozzles[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 71-79. |
65 | GERBER A G. Two-phase Eulerian/Lagrangian model for nucleating steam flow[J]. Journal of Fluids Engineering, 2002, 124(2): 465-475. |
66 | GERBER A G, KERMANI M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(10): 2217-2231. |
67 | 林智荣, 袁新. 自发凝结流动数值模拟方法及其在Laval喷管中的应用[J]. 工程热物理学报, 2006, 27(1): 42-44. |
LIN Z R, YUAN X. A numerical method for spontaneous condensing flow and its application on Laval nozzle[J]. Journal of Engineering Thermophysics, 2006, 27(1): 42-44. | |
68 | 王美利. 高速膨胀流动中的非平衡凝结及其对流场影响的研究[D]. 合肥: 中国科学技术大学, 2006. |
WANG M L. Investigation of non-equilibrium condensation in high-speed expansion flows[D]. Hefei: University of Science and Technology of China, 2006. | |
69 | 杨勇. 水蒸气超音速流动中的非平衡相变与激波效应[D]. 大连: 大连理工大学, 2010. |
YANG Y. Non-equilibrium phase change and shock effect in supersonic steam flow[D]. Dalian: Dalian University of Technology, 2010. | |
70 | JIANG W M, BIAN J, LIU Y, et al. Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle[J]. Journal of Natural Gas Science and Engineering, 2016, 34(6): 1054-1061. |
71 | 费继友, 李瑜, 李亮. 甲烷、水蒸气与正壬烷气体的三相凝结流动数值分析[J]. 石油化工高等学校学报, 2008, 21(3): 1-4. |
FEI J Y, LI Y, LI L. Numerical analysis on the three-phase flow with condensation of CH4, H2O and n-C9H20[J]. Journal of Petrochemical Universities, 2008, 21(3): 1-4. | |
72 | 曹学文, 边江, 靳学堂, 等. 三组分气体超声速凝结过程数值模拟与实验研究[J]. 石油学报(石油加工), 2019, 35(1): 99-110. |
CAO X W, BIAN J, JIN X T, et al. Numerical simulation and experimental study on supersonic condensation process of ternary mixture[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(1): 99-110. | |
73 | JONES I P, GUILBERT P W, OWENS M P, et al. The use of coupled solvers for complex multi-phase and reacting flows[C]//Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2003. |
74 | JASSIM E, ABDI M A, MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 1. Real gas effects and shockwave[J]. Petroleum Science and Technology, 2008, 26(15):1757-1772. |
75 | JASSIM E, ABDI M A, MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 2. Nozzle geometry and vorticity[J]. Petroleum Science and Technology, 2008, 26(15): 1773-1785. |
76 | KARIMI A, ABDI M A. Selective dehydration of high-pressure natural gas using supersonic nozzles[J]. Chemical Engineering and Processing, 2009, 48(1): 560-568. |
77 | MALYSHKINA M M. The procedure for investigation of the efficiency of purification of natural gases in a supersonic separator[J]. High Temperature, 2010, 48(2): 244-250. |
78 | VAZIRI B M, SHAHSAVAND A. Optimal selection of supersonic separators inlet velocity components via maximization of swirl strength and centrifugal acceleration[J]. Separation Science and Technology, 2015, 50(5): 752-759. |
79 | 杨志毅. 油气超音速旋流分离技术研究[D]. 南充: 西南石油学院, 2004. |
YANG Z Y. Research on oil and gas supersonic cyclone separation technology[D]. Nanchong: Southwest Petroleum University, 2004. | |
80 | 刘恒伟. 超音速分离管的研发及其流动与传热传质特性的研究[D]. 北京: 北京工业大学, 2006. |
LIU H W. Development of supersonic separator and study of its flow and heat and mass transfer characteristics[D]. Beijing: Beijing University of Technology, 2006. | |
81 | 鲍玲玲, 刘中良, 蒋文明. 再循环超音速分离管除湿性能及其流动特性研究[J]. 工程热物理学报, 2011, 32(6): 1031-1034. |
BAO L L, LIU Z L, JIANG W M. The research of dehydration performance and flow characteristic of the recycling supersonic separator[J]. Journal of Engineering Thermophysics, 2011, 32(6): 1031-1034. | |
82 | 王治红, 朱超, 王小强, 等. 再循环腔进口位置对超音速分离器流场影响数值分析[J]. 石油与天然气化工, 2014, 43(2): 117-121. |
WANG Z H, ZHU C, WANG X Q, et al. Numerical analysis of influence of recycling chamber inlet position on the flow of supersonic separator[J]. Chemical Engineering of Oil and Gas, 2014, 43(2):117-121. | |
83 | 刘兴伟. 含可凝结组分气体超音速流动、非平衡相变及其流动与传质特性研究[D]. 北京: 北京工业大学, 2015. |
LIU X W. A study on the characteristics of non-equilibrium phase change, supersonic flow and mass transfer of condensing gases[D]. Beijing: Beijing University of Technology, 2015. | |
84 | 曹学文. 超声速旋流天然气分离研究[D]. 西安: 西安交通大学, 2006. |
CAO X W. A study on the supersonic swirling separation of natural gas[D]. Xi’an: Xi’an Jiaotong University, 2006. | |
85 | BIAN J, JIANG W M, TENG L, et al. Structure improvements and numerical simulation of supersonic separators[J]. Chemical Engineering and Processing, 2016, 110: 214-219. |
86 | 马庆芬. 旋转超音速凝结流动及其应用技术研究[D]. 大连: 大连理工大学, 2009. |
MA Q F. Study on the rotating supersonic condensing flow and application technology[D]. Dalian: Dalian University of Technology, 2009. | |
87 | 文闯, 曹学文, 杨燕, 等. 环形超声速喷管内天然气流场特性[J]. 化工进展, 2011, 30(4): 720-724. |
WEN C, CAO X W, YANG Y, et al. Flow characteristics of natural gas in annular supersonic nozzles[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 720-724. | |
88 | 王荧光. 循环超音速分离器的流体流动及实验性能研究[D]. 大连: 大连理工大学, 2019. |
WANG Y G. Research on fluid flow and experimental performance of circulating supersonic separator[D]. Dalian: Dalian University of Technology, 2019. | |
89 | NIKNAM P H, MORTAHEB H R, MOKHTARANI B. Dehydration of low-pressure gas using supersonic separation: experimental investigation and CFD analysis[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 202-214. |
90 | MA Q F, HU D P, HE G H, et al. Performance of inner-core supersonic gas separation device with droplet enlargement method[J]. Chinese Journal of Chemical Engineering, 2009, 17(6): 925-933. |
91 | 文闯. 湿天然气超声速旋流分离机理研究[D]. 青岛: 中国石油大学(华东), 2014. |
WEN C. Wet gas separation using supersonic swirling method[D]. Qingdao: China University of Petroleum (EastChina), 2014. | |
92 | LIU H W, LIU Z L, FENG Y X, et al. Characteristic of a supersonic swirling dehydration system of natural gas[J]. Chinese Journal of Chemical Engineering, 2005, 13(1): 9-12. |
93 | 鲍玲玲. 超音速气体净化分离装置及其内部流动分离特性研究[D]. 北京: 北京工业大学, 2011. |
BAO L L. Study and development of new supersonic separators and their internal flow and separation performance[D]. Beijing: Beijing University of Technology, 2011. | |
94 | BROUWER J M, EPSOM H D. Twister supersonic gas conditioning for unmanned platforms and subsea gas processing[C]//Offshore Europe, Aberdeen, UK, 2003. |
95 | 蒋文明, 刘中良, 刘恒伟, 等. 新型天然气超音速脱水净化装置现场试验[J]. 天然气工业, 2008, 28(2): 136-138. |
JIANG W M, LIU Z L, LIU H W, et al. Field test of a new type natural gas supersonic dehydration and purification device[J]. Natural Gas Industry, 2008, 28(2): 136-138. | |
96 | 温艳军, 梅灿, 黄铁军, 等. 超音速分离技术在塔里木油气田的成功应用[J]. 天然气工业, 2012, 32(7): 77-79. |
WEN Y J, MEI C, HUANG T J, et al. Successful application of supersonic separation technology in Tarim oil and gas field[J]. Natural Gas Industry, 2012, 32(7):77-79. | |
97 | WILLEMS G P. Condensed rotational cleaning of natural gas[D]. Netherlands: Eindhoven University of Technology, 2009. |
98 | KROES J P. Droplet collection in a scaled-up rotating separator[D]. Netherlands: Eindhoven University of Technology, 2012. |
99 | SAMAWE R A, ROSTANI K, JALIL A M, et al. Concept proofing of supersonic nozzle separator for CO2 separation from natural gas using a flow loop[C]//Offshore Technology Conference Asia, Kuala Lumpur,2014. |
100 | IMAEV S Z, BAGIROV L A, BORISOV V E, et al. New low temperature process of CO2 recovery from natural gases[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014. |
101 | 孙文娟. 天然气超声速旋流脱酸气机理研究[D]. 青岛: 中国石油大学(华东), 2018. |
SUN W J. Natural gas sweetening using supersonic swirling separation technology[D]. Qingdao: China Univrsity of Petroleum (East China), 2018. | |
102 | 杨文, 曹学文, 徐晓婷, 等. 高速膨胀天然气凝结流动特性[J]. 石油学报(石油加工), 2016, 32(1): 73-81. |
YANG W, CAO X W, XU X T, et al. Flow and condensation characteristics of natural gas with high speed expansion[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1): 73-81. | |
103 | 边江, 曹学文, 杨文, 等. 入口压力对天然气超声速液化特性的影响[J]. 高压物理学报, 2018, 32(3): 1-7. |
BIAN J, CAO X W, YANG W, et al. Influence of inlet pressure on supersonic liquefaction of natural gas mixtures[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 1-7. | |
104 | 边江, 曹学文, 杨文, 等. 入口温度对天然气超声速液化性能的影响[J]. 制冷学报, 2019, 40(1): 107-113. |
BIAN J, CAO X W, YANG W, et al. Effect of inlet temperature on supersonic liquefaction characteristics of natural gas[J]. Journal of Refrigeration, 2019, 40(1): 107-113. | |
105 | BIAN J, CAO X W, YANG W, et al. Condensation characteristics of natural gas in the supersonic liquefaction process[J]. Energy, 2019, 168 (3): 99-110. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[4] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[7] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[8] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[9] | JI Guojian, YIN Qirui, LU Beibei, HUANG Pengyuan, ZHOU Xiaoqing, GU Jinming. Experimental research on the effect of corrugated plates on the condensation heat transfer characteristics of humid air [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5076-5082. |
[10] | ZHANG Xiao, WANG Zhanyi, WU Zhiying, LIU Yuting, LIU Zilong, LIU Xinjia, ZHANG Sui’an. Coating modification technology of fracturing proppant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 386-400. |
[11] | LI Wei, QI Dawei, YANG Jiongliang. Direct contact heat transfer process of vacuum exhaust system in wind tunnel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4618-4624. |
[12] | JIA Wenlong, SUN Yibin, TANG Ding, CHEN Jiawen, LEI Siluo, LI Changjun. Intelligent recognition method for pressure drop signals of gas pipeline leakage based on support vector machine [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4713-4722. |
[13] | LYU Jieqiong, XIE Hui, GAO Yongping, LIAN Lili, WANG Xiyue, ZHANG Hao, GAO Wenxiu, LOU Dawei. Application of nitrogen-rich covalent organic framework material COF-MC catalyzing Knoevenagel condensation reaction [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2993-3001. |
[14] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[15] | WANG Yujuan, TANG Jianfeng, HUA Yihuai, CHEN Jing, SANG Wei, LIU Yunfei. Influence of different start-up conditions on response characteristics of natural gas decarbonization device [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1770-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |