1 | VYMAZAL J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development[J]. Water Research, 2013, 47(14): 4795-4811. | 2 | WU Y, HE T, CHEN C, et al. Impacting microbial communities and absorbing pollutants by canna indica and cyperus alternifolius in a full-scale constructed wetland system[J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 802. | 3 | WU Y, HAN R, YANG X, et al. Long-term performance of an integrated constructed wetland for advanced treatment of mixed wastewater[J]. Ecological Engineering, 2017, 99: 91-98. | 4 | STEFANAKIS A I, TSIHRINTZIS V A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands[J]. Chemical Engineering Journal, 2012, 181/182: 416-430. | 5 | ZHAO L, LU Z, TAN S, et al. Effects of glucose and starch on the toxicity of nitrobenzene to plants and microbes in constructed wetlands[J]. Science of the Total Environment, 2019, 658: 809-817. | 6 | 周钰明, 余春香. 吸附法处理含氟废水的研究进展[J]. 离子交换与吸附, 2001, 17(5): 369-376. | 6 | ZHOU Yuming, YU Chunxiang. Development on dealing with F-containing wastewater using adsorption methods[J]. Ion Exchange and Adsorption, 2001, 17(5): 369-376. | 7 | 陈鋆, 高光, 李一平, 等. 太湖水体中悬浮物的静沉降特征[J]. 湖泊科学, 2006, 18(5): 528-534. | 7 | CHEN Yun, GAO Guang, LI Yiping, et al. Hydrostatic settling of suspended matter of Lake Taihu[J]. Journal of Lake Science, 2006, 18(5): 528-534. | 8 | 徐金兰, 王宝泉, 王志盈, 等. 石灰沉淀-混凝沉淀处理含氟废水的试验[J]. 水处理技术, 2003, 29(5): 282-285. | 8 | XU Jinlan, WANG Baoquan, WANG Zhiying, et al. Treatment of wastewater-containing fluoride by lime-sedimentation and coagulation precipitation[J]. Technology of Water Treatment, 2003, 29(5): 282-285. | 9 | WU Y, HAN R, YANG X, et al. Correlating microbial community with physicochemical indices and structures of a full-scale integrated constructed wetland system[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6917-6926. | 10 | 荣宏伟, 李健中, 张可方. 铜对活性污泥微生物活性影响研究[J]. 环境工程学报, 2010, 4(8): 1709-1713. | 10 | RONG Hongwei, LI Jianzhong, ZHANG Fangke. Study on effects of copper on microbial activity of activated sludge[J]. Chinese Journal of Environmental Engineering, 2010, 4(8): 1709-1713. | 11 | 南国英, 李士波, 代学民. SOUR作为活性污泥法SBR反应器运行参数的研究进展[J]. 市政技术, 2018, 36(6): 171-173. | 11 | Guoying NAN, LI Shibo, DAI Xuemin. Research progress of SBR raector operating parameters with SOUR activated sludge process[J]. Municipal Technology, 2018, 36(6): 171-173. | 12 | BLOOR J C, ANDERSON G K, WILLEY A R. High rate aerobic treatment of brewery wastewater using the jet loop reactor[J]. Water Research, 1995, 29(5): 1217-1223. | 13 | CERVANTES-AVILéS P, PI?AS C N, IDA J, et al. Influence of wastewater type on the impact generated by TiO2 nanoparticles on the oxygen uptake rate in activated sludge process[J]. Journal of Environmental Management, 2017, 190: 35-44. | 14 | ABDELMAGID H M, TABATABAI M A. Nitrate reductase activity of soils[J]. Soil Biology & Biochemistry, 1987, 19(4): 421-427. | 15 | CHOWDHURY N, NAKHLA G, ZHU J. Load maximization of a liquid–solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater[J]. Chemosphere, 2008, 71(5): 807-815. | 16 | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. | 16 | GUAN Songyin. Soil enzyme research methods[M]. Beijing: Agricultural Press, 1986. | 17 | 何春艳, 张翔凌, 喻俊, 等. Zn系LDHs负载改性石英砂和沸石对Cr(VI)吸附效果对比及其作用机理研究[J]. 环境科学学报, 2019, 39(2): 399-409. | 17 | HE Chunyan, ZHANG Xiangling, YU Jun, et al. Study on adsorption Performance and mechanism of Cr(Ⅵ) by Zn-LDHs coating On zeolites and quartz sands[J]. Acta Scientiae Circumstantiae, 2019, 39(2): 399-409. | 18 | 杨洋. 热泵潜流湿地系统内部污染物降解特性研究[D]. 唐山:华北理工大学, 2018. | 18 | Yang Yang. Heat pump undercurrent wetland system internal pollutants degradation characteristics research[D] . Tangshan: North China University of Science and Technology, 2018. | 19 | 陈后兴, 罗仙平, 刘立良. 含氟废水处理研究进展[J]. 四川有色金属, 2006(1): 31-35, 46. | 19 | CHEN Houxing, LUO Xianping, LIU Liliang. Research on the progress of wastewater of fluorine containing[J]. Sichuan Nonferrous Metals, 2006(1): 31-35, 46. | 20 | ALMEIDA A, CARVALHO F, IMAGINáRIO J M, et al. Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: effect of hydraulic load[J]. Ecological Engineering, 2017, 99: 535-542. | 21 | GABOUTLOELOE G K, CHEN S, BARBER M E, et al. Combinations of horizontal and vertical flow constructed wetlands to improve nitrogen removal[J]. Water, Air, & Soil Pollution: Focus, 2009, 9: 279-286. | 22 | YI D, SONG X, WANG Y, et al. Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland[J]. Ecological Engineering, 2012, 46: 107–111. | 23 | ZHU H, YAN B, XU Y, et al. Removal of nitrogen and cod in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. | 24 | ZHAO Y J, HUI Z, CHAO X, et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater[J]. Ecological Engineering, 2011, 37(10): 1546-1554. | 25 | YU G, PENG H, FU Y, et al. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria. Bioresource Technology, 2019, 280: 337-344. | 26 | HU X, LI D, QIAO Y, et al. Salt tolerance mechanism of a hydrocarbon-degrading strain: salt tolerance mediated by accumulated betaine in cells[J]. Journal of Hazardous Materials, 2020, 392: 122326. | 27 | OCHOA-HERRERA V, BANIHANI Q, LEóN G, et al. Toxicity of fluoride to microorganisms in biological wastewater treatment systems[J]. Water Research, 2009, 43(13): 3177-3186. | 28 | GUO Q, LI N, BING Y, et al. Denitrifier communities impacted by heavy metal contamination in freshwater sediment[J]. Environmental Pollution, 2018, 242: 426-432. | 29 | GHAFARI S, HASAN M, AROUA MK. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria[J]. Journal of Hazardous Materials, 2009, 162(2-3): 1507-1513. | 30 | VINATI A, MAHANTY B, BEHERA S K. Clay and clay minerals for fluoride removal from water: a state-of-the-art review[J]. Applied Clay Science, 2015, 114: 340-348. | 31 | 常国华, 李丽云, 高天鹏, 等. 兰州银滩湿地公园水质指标测定[J]. 中国环境管理干部学院学报, 2015, 25(1): 54-57. | 31 | CHANG Guohua, LI Liyun, GAO Tianpeng, et al. Determinatio of water quality in Lanzhou Yin Wetland Park[J]. Journal of Environmental Management College of China, 2015, 25(1): 54-57. | 32 | 李玉倩. 丹河人工湿地对化工污水的处理效果探讨[D]. 太原: 太原理工大学, 2012. | 32 | LI Yuqian. Investigation of chemical sewage treatment using Danhe artificial wetland[D]. Taiyuan: Taiyuan University of Technology, 2012. | 33 | ISMAIL Z Z, ABDELKAREEM H N. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete[J]. Waste Management, 2015, 45: 66-75. | 34 | CAMARENA-RANGEL N, ROJAS VELáZQUEZ A N, SANTOS-DíAZ MDS. Fluoride bioaccumulation by hydroponic cultures of camellia (camellia japonica spp.) and sugar cane (saccharum officinarum spp.)[J]. Chemosphere, 2015, 136: 56-62. | 35 | 刘树娟, 陈磊, 钟润生, 等. 硝酸钙对河流底泥中含硫化合物嗅味原位控制[J]. 环境科学研究, 2012, 25(6): 691-698. | 35 | LIU Shujuan, CHEN Lei, ZHONG Runsheng, et al. In situ control of odor in sulfide-containing compounds with calcium nitrate in river sediments[J]. Research of Environmental Sciences, 2012, 25(6): 691-698. | 36 | WU Y, RONG X, ZHANG C, et al. Response of the intertidal microbial community structure and metabolic profiles to zinc oxide nanoparticle exposure [J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2253. | 37 | ZUO H, CHEN L, KONG M, et al. Toxic effects of fluoride on organisms[J]. Life Sciences, 2018, 198: 18-24. | 38 | BALA W A, BENITHA V S, JEYASUBRAMANIAN K, et al. Investigation of anti-bacterial activity and cytotoxicity of calcium fluoride nanoparticles[J]. Journal of Fluorine Chemistry, 2017, 193: 38-44. | 39 | SERRANO R. Salt tolerance in plants and microorganisms: Toxicity targets and defense responses[J]. International Review of Cytology, 1996, 165: 1-52. | 40 | WANG Z, LOOSDRECHT M C M VAN, SAIKALY P E. Gradual adaptation to salt and dissolved oxygen: Strategies to minimize adverse effect of salinity on aerobic granular sludge[J]. Water Research, 2017, 124: 702-712. | 41 | LU H, HUANG H, YANG W, et al. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification[J]. Water Research, 2018, 133: 165-172. | 42 | KORNAROS M, LYBERATOS G. Kinetic modelling of Pseudomonasdenitrificans growth and denitrification under aerobic, anoxic and transient operating conditions[J]. Water Research, 1998, 32(6): 1912-1922. | 43 | WANG R, ZHENG P, DING A Q, et al. Effects of inorganic salts on denitrifying granular sludge: the acute toxicity and working mechanisms[J]. Bioresource Technology, 2016, 204: 65-70. |
|