Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 440-450.DOI: 10.16085/j.issn.1000-6613.2020-0450
• Resources and environmental engineering • Previous Articles Next Articles
Hong CHEN1,2(), Jun WU1,2, Chen CHEN3, Zhi TU1, Li’e YU1, Enzhe YANG1, Min YANG1,2, Benyi XIAO2,4()
Received:
2020-03-24
Online:
2021-01-12
Published:
2021-01-05
Contact:
Benyi XIAO
陈宏1,2(), 吴军1,2, 陈晨3, 涂智1, 禹丽娥1, 杨恩喆1, 杨敏1,2, 肖本益2,4()
通讯作者:
肖本益
作者简介:
陈宏(1983—),男,博士,副教授,研究方向为环境污染治理技术。E-mail:基金资助:
CLC Number:
Hong CHEN, Jun WU, Chen CHEN, Zhi TU, Li’e YU, Enzhe YANG, Min YANG, Benyi XIAO. Advances in biohydrogen production from anaerobic co-fermentation of organic wastes[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 440-450.
陈宏, 吴军, 陈晨, 涂智, 禹丽娥, 杨恩喆, 杨敏, 肖本益. 有机废弃物厌氧共发酵制氢研究进展[J]. 化工进展, 2021, 40(1): 440-450.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0450
工艺参数 | 运行特性指标 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底物及混合比 | 反应器 类型 | 发酵 温度 /℃ | 有机 负荷 | 初始 pH | HRT | 发酵液pH | 氨氮(N) /mg?L-1 | VFAs | 氢气产率 | 氢气 体积分数 /% | |||
总含量 | 乙酸 占比 /% | 丁酸 占比 /% | |||||||||||
食品废弃物∶市政污泥(3∶1,VS) | 批次 | 35 | 20g VS·L-1 | 6.0±0.1 | — | — | — | 9.71g·L-1 | 45.31 | 49.12 | 174.6mL·(g VSadded)-1 | — | [ |
市政污泥∶黑麦草(30∶70,VS) | 批次 | 37 | 12g VS·L-1 | 7.0 | — | — | — | 900mg·Lp-1① | 79.00 | 15.00① | 60mL·(g VSadded)-1 | — | [ |
市政污泥∶杨树叶(20∶80,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 5.51 | — | 115mg·(g VSadded)-1① | 75.00① | 18.00① | 37.8mL·(g VSadded)-1 | — | [ |
市政污泥∶草渣(3∶7,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 6.01 | 44.64 | 13.1mmol·L-1 | 95① | — | 45.6mL·(g VSadded)-1 | — | [ |
市政污泥∶废花卉(10∶90,VS) | 批次 | 37 | 10g VS·L-1 | — | — | — | — | 1400mg·L-1① | 56.90 | 30.00① | 39mL·(g VSadded)-1 | — | [ |
食品废弃物∶园林垃圾(10∶90,VS) | 批次 | 70 | 8.5g VS·L-1 | — | — | — | — | — | 优势② | — | 46±1mL·(g VSadded)-1 | — | [ |
食品废弃物∶市政污泥(80∶20,TS) | 批次 | 37±1 | 25g TS·L-1 | 7.21 | — | 6.12~6.51 | 683.20 | 281.84mg·(g VS)-1 | — | 62.19 | 60.23mL·(g VSadded)-1 | 62.40 | [ |
食品废弃物∶厌氧污泥(54∶46,VS) | CSTR | 55 | 39.6 g VS·(L·d)-1 | 控制 5.0~5.5 | 0.8d | — | 62.92±11.90 | (4858±965.8)mg·L-1 | 共占83.0~90.0 | (76.8±0.7)mL·(g VSadded)-1 | 54.5±5.6 | [ | |
食品废弃物∶市政污泥(80∶20,VS) | ASBR | 35 | 42 g TCOD(L·d)-1 | 7.0±0.1 | 72h | — | — | 13.9g·L-1 | 15.00 | 40.00 | 62.0mL·(g VSadded)-1 | 50 | [ |
食品废弃物∶活性污泥(1∶5,质量) | CSTR | 37 | 14.6 kg VS·(m3·d)-1 | 控制 5.54±0.02 | 3.0d | — | — | (8204±828)mg·L-1 | — | 60.68① | (8.6±4.8)L·(kg VS·d)-1 | 18.40±6.3 | [ |
土豆皮∶鸡粪(7∶3,VS) | 批次 | 35±1 | 40g VS·L-1 | 5.5 | — | — | — | 6338.01mg·L-1 | 30.00① | 60.00① | 41.02mL·(g VSadded)-1 | 37.29 | [ |
食品废弃物∶鸡粪(50∶50,体积) | 批次 | 35 | 940g VS·L-1 | 7.0 | — | — | — | 0.8g·L-1① | 优势② | — | 120.97mL·(g COD)-1 | 53.35 | [ |
食品废弃 物∶鸡粪(7∶3,体积) | 批次 | 35 | — | 7.0 | — | 5.8 | 344.71 | 1143.1mg·L-1 | 12.90 | 32.40 | 60.8mL·(g VSadded)-1 | — | [ |
工艺参数 | 运行特性指标 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底物及混合比 | 反应器 类型 | 发酵 温度 /℃ | 有机 负荷 | 初始 pH | HRT | 发酵液pH | 氨氮(N) /mg?L-1 | VFAs | 氢气产率 | 氢气 体积分数 /% | |||
总含量 | 乙酸 占比 /% | 丁酸 占比 /% | |||||||||||
食品废弃物∶市政污泥(3∶1,VS) | 批次 | 35 | 20g VS·L-1 | 6.0±0.1 | — | — | — | 9.71g·L-1 | 45.31 | 49.12 | 174.6mL·(g VSadded)-1 | — | [ |
市政污泥∶黑麦草(30∶70,VS) | 批次 | 37 | 12g VS·L-1 | 7.0 | — | — | — | 900mg·Lp-1① | 79.00 | 15.00① | 60mL·(g VSadded)-1 | — | [ |
市政污泥∶杨树叶(20∶80,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 5.51 | — | 115mg·(g VSadded)-1① | 75.00① | 18.00① | 37.8mL·(g VSadded)-1 | — | [ |
市政污泥∶草渣(3∶7,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 6.01 | 44.64 | 13.1mmol·L-1 | 95① | — | 45.6mL·(g VSadded)-1 | — | [ |
市政污泥∶废花卉(10∶90,VS) | 批次 | 37 | 10g VS·L-1 | — | — | — | — | 1400mg·L-1① | 56.90 | 30.00① | 39mL·(g VSadded)-1 | — | [ |
食品废弃物∶园林垃圾(10∶90,VS) | 批次 | 70 | 8.5g VS·L-1 | — | — | — | — | — | 优势② | — | 46±1mL·(g VSadded)-1 | — | [ |
食品废弃物∶市政污泥(80∶20,TS) | 批次 | 37±1 | 25g TS·L-1 | 7.21 | — | 6.12~6.51 | 683.20 | 281.84mg·(g VS)-1 | — | 62.19 | 60.23mL·(g VSadded)-1 | 62.40 | [ |
食品废弃物∶厌氧污泥(54∶46,VS) | CSTR | 55 | 39.6 g VS·(L·d)-1 | 控制 5.0~5.5 | 0.8d | — | 62.92±11.90 | (4858±965.8)mg·L-1 | 共占83.0~90.0 | (76.8±0.7)mL·(g VSadded)-1 | 54.5±5.6 | [ | |
食品废弃物∶市政污泥(80∶20,VS) | ASBR | 35 | 42 g TCOD(L·d)-1 | 7.0±0.1 | 72h | — | — | 13.9g·L-1 | 15.00 | 40.00 | 62.0mL·(g VSadded)-1 | 50 | [ |
食品废弃物∶活性污泥(1∶5,质量) | CSTR | 37 | 14.6 kg VS·(m3·d)-1 | 控制 5.54±0.02 | 3.0d | — | — | (8204±828)mg·L-1 | — | 60.68① | (8.6±4.8)L·(kg VS·d)-1 | 18.40±6.3 | [ |
土豆皮∶鸡粪(7∶3,VS) | 批次 | 35±1 | 40g VS·L-1 | 5.5 | — | — | — | 6338.01mg·L-1 | 30.00① | 60.00① | 41.02mL·(g VSadded)-1 | 37.29 | [ |
食品废弃物∶鸡粪(50∶50,体积) | 批次 | 35 | 940g VS·L-1 | 7.0 | — | — | — | 0.8g·L-1① | 优势② | — | 120.97mL·(g COD)-1 | 53.35 | [ |
食品废弃 物∶鸡粪(7∶3,体积) | 批次 | 35 | — | 7.0 | — | 5.8 | 344.71 | 1143.1mg·L-1 | 12.90 | 32.40 | 60.8mL·(g VSadded)-1 | — | [ |
底物类型 | 接种物 | 接种物预处理 | 共酵温度 /℃ | 嗜热 产氢菌属 | 嗜热 厌氧菌属 | 梭状芽 孢杆菌属 | 肠杆 菌属 | 芽孢杆菌属 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
厌氧污泥∶杨树叶 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 70.1% | 14.4% | 10.1% | [ |
厌氧污泥∶废花卉 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 48.1% | 37.8% | 1.4% | [ |
食品废弃物∶厌氧污泥 | 厌氧污泥 | 重复曝气7d(DO<0.5mg/L) | 55 | 4.3% | 20.2% | 18.1% | — | — | [ |
食品废弃物∶市政污泥 | 厌氧污泥 | 热预处理(90℃,15min) | 35 | — | — | √ | — | √ | [ |
城市固体垃圾∶厌氧污泥 | 厌氧污泥 | 无 | 55 | — | — | √ | — | — | [ |
底物类型 | 接种物 | 接种物预处理 | 共酵温度 /℃ | 嗜热 产氢菌属 | 嗜热 厌氧菌属 | 梭状芽 孢杆菌属 | 肠杆 菌属 | 芽孢杆菌属 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
厌氧污泥∶杨树叶 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 70.1% | 14.4% | 10.1% | [ |
厌氧污泥∶废花卉 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 48.1% | 37.8% | 1.4% | [ |
食品废弃物∶厌氧污泥 | 厌氧污泥 | 重复曝气7d(DO<0.5mg/L) | 55 | 4.3% | 20.2% | 18.1% | — | — | [ |
食品废弃物∶市政污泥 | 厌氧污泥 | 热预处理(90℃,15min) | 35 | — | — | √ | — | √ | [ |
城市固体垃圾∶厌氧污泥 | 厌氧污泥 | 无 | 55 | — | — | √ | — | — | [ |
1 | XIA A, JACOB A, HERRMANN C, et al. Fermentative bio-hydrogen production from galactose[J]. Energy, 2016, 96: 346-354. |
2 | LUNPROM S, PHANDUANG O, SALAKKAM A, et al. Bio-hythane production from residual biomass of Chlorella sp. biomass through a two-stage anaerobic digestion[J]. International Journal of Hydrogen Energy, 2019, 44(6): 3339-3346. |
3 | HAN W, HUANG J, ZHAO H G, et al. Continuous biohydrogen production from waste bread by anaerobic sludge[J]. Bioresource Technology, 2016, 212: 1-5. |
4 | HANS M, KUMAR S. Biohythane production in two-stage anaerobic digestion system[J]. International Journal of Hydrogen Energy, 2019, 44(32): 17363-17380. |
5 | KUMAR G S, KUMARI S, REDDY K, et al. Trends in biohydrogen production: major challenges and state-of-the-art developments[J]. Environmental Technology, 2013, 34(13/14): 1653-1670. |
6 | MURI P, MARINŠEK-LOGAR R, DJINOVIĆ P, et al. Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions[J]. Enzyme and Microbial Technology, 2018, 111:87-96. |
7 | KUMAR G, MATHIMANI T, RENE E R, et al. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13106-13113. |
8 | WANG J, WAN W. Factors influencing fermentative hydrogen production: a review[J]. International Journal of Hydrogen Energy, 2009, 34(2): 799-811. |
9 | CHENG J, DING L K, LIN R, et al. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance[J]. Applied Energy, 2016, 184: 1-8. |
10 | YANG G, WANG J L. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: performance evaluation and kinetic analysis[J]. Bioresource Technology, 2017,243: 1027-1036. |
11 | YANG G, HU Y M, WANG J L. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge[J]. Bioresource Technology, 2019, 285: 121342. |
12 | 张文哲, 陈静, 刘玉, 等. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853-4861. |
ZHANG Wenzhe, CHEN Jing, LIU Yu, et al. Comparison of mesophilic and thermophilic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4853-4861. | |
13 | BOLZONELLA D, BATTISTA F, CAVINATO C, et al. Recent developments in biohythane production from household food wastes: a review[J]. Bioresource Technology, 2018, 257: 311-319. |
14 | YANG G, WANG J L. Biohydrogen production by co-fermentation of sewage sludge and grass residue: effect of various substrate concentrations[J]. Fuel, 2019, 237: 1203-1208. |
15 | WANG H X, XU J L, SHENG L X, et al. A review on bio-hydrogen production technology[J]. International Journal of Energy Research, 2018, 42(11): 3442-3453. |
16 | YANG G, WANG J L. Synergistic biohydrogen production from flower wastes and sewage sludge[J]. Energy & Fuels, 2018, 32(6):6879-6886. |
17 | ELBESHBISHY E, DHAR B R, NAKHLA G, et al. A critical review on inhibition of dark biohydrogen fermentation[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 656-668. |
18 | SRIVASTAVA N, SRIVASTAVA M, MALHOTRA B D, et al. Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach[J]. Biotechnology Advances, 2019, 37(6): 107384. |
19 | CHONG M L, SABARATNAM V, SHIRAI Y, et al. Biohydrogen production from biomass and industrial wastes by dark fermentation[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3277-3287. |
20 | GADHE A, SONAWANE S S, VARMA M N. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4502-4511. |
21 | NORDELL E, NILSSON B, NILSSON PÅL S, et al. Co-digestion of manure and industrial waste-the effects of trace element addition[J]. Waste Management, 2016, 47: 21-27. |
22 | TAMPIO E, ERVASTI S, PAAVOLA T, et al. Use of laboratory anaerobic digesters to simulate the increase of treatment rate in full-scale high nitrogen content sewage sludge and co-digestion biogas plants[J]. Bioresource Technology, 2016, 220: 47-54. |
23 | DHAR B R, ELBESHBISHY E, NAKHLA G. Influence of iron on sulfide inhibition in dark biohydrogen fermentation[J]. Bioresource Technology, 2012, 126: 123-130. |
24 | DALBY FREDERIK R, HANSEN M J, FEILBERG A. Application of proton-transfer-reaction mass spectrometry (PTR-MS) and 33S isotope labeling for monitoring sulfur processes in livestock waste[J]. Environmental Science & Technology, 2018, 52(4): 2100-2107. |
25 | XUE W Q, HAO T W, MACKEY H R, et al. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment[J]. Water Research, 2017, 124: 513-520. |
26 | LE D T H, NITISORAVUT R. Modified hydrotalcites for enhancement of biohydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12169-12176. |
27 | LIN C. Heavy metal effects on fermentative hydrogen production using natural mixed microflora[J]. International Journal of Hydrogen Energy, 2008, 33(2): 587-593. |
28 | ŚWIERCZEK L, CIEŚLIK B M, KONIECZKA P. The potential of raw sewage sludge in construction industry-a review[J]. Journal of Cleaner Production, 2018, 200: 342-356. |
29 | YANG X, LI Q, TANG Z, et al. Heavy metal concentrations and arsenic speciation in animal manure composts in China[J]. Waste Management, 2017, 64: 333-339. |
30 | ZUMAR BUNDHOO M A, MOHEE R. Inhibition of dark fermentative bio-hydrogen production: a review[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6713-6733. |
31 | RAFIEENIA R, PIVATO A, LAVAGNOLO M C. Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12013-12022. |
32 | STABNIKOVA O, ANG S S, LIU X Y, et al. The use of hybrid anaerobic solid-liquid (HASL) system for the treatment of lipid-containing food waste[J]. Chemical Technology and Biotechnology, 2005, 80(4): 455-461. |
33 | WU L J, KOBAYASHI T, LI Y Y, et al. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste[J]. Energy Conversion and Management, 2015, 106: 1174-1182. |
34 | ABREU A A, TAVARES F, ALVES M M, et al. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process[J]. Bioresource Technology, 2019, 278: 180-186. |
35 | 王晓, 严媛媛, 张萍, 等. 新兴污染物对污泥厌氧发酵的影响及其厌氧降解研究进展[J]. 化工进展, 2014, 33(12): 3379-3386. |
WANG Xiao, YAN Yuanyuan, ZHANG Ping, et al. Research progress of effect of emerging contaminants on sludge anaerobic fermentation and their anaerobic degradation[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3379-3386. | |
36 | 王怡琴, 谢学辉, 郑秀林, 等. 激活剂促进微生物降解偶氮、蒽醌和三苯甲烷类染料研究进展[J]. 化工进展, 2019, 38(6): 2968-2976. |
WANG Yiqin, XIE Xuehui, ZHENG Xiulin, et al. Advances in research on activators promoting microbial degradation of dyes[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2968-2976. | |
37 | 刘娜, 谢学辉, 柳建设. 印染废水水解酸化作用及其调控研究进展[J]. 化工进展, 2014, 33(10): 2758-2763. |
LIU Na, XIE Xuehui, LIU Jianshe, et al. Functions and regulations of hydrolytic acidification in dyeing wastewater treatment:a review[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2758-2763. | |
38 | DESSÌ P, PORCA E, FRUNZO L, et al. Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9233-9245. |
39 | SAWATDEENARUNAT C, SURENDRA K C, TAKARA D, et al. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities[J]. Bioresource Technology, 2015, 178: 178-186. |
40 | GÓMEZ-QUIROGA X, ABOUDI K, ÁLVAREZ-GALLEGO C J, et al. Enhancement of methane production in thermophilic anaerobic co-digestion of exhausted sugar beet pulp and pig manure[J]. Applied Sciences, 2019, 9(9): 1791. |
41 | RAJESH B J, KAVITHA S, YUKESH K R, et al. Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route[J]. Bioresource Technology, 2020, 298: 122378. |
42 | 杨茜, 鞠美庭, 李维尊. 秸秆厌氧消化产甲烷的研究进展[J]. 农业工程学报, 2016, 32(14): 232-242. |
YANG Qian, JU Meiting, LI Weizun. Research progress of anaerobic digestion of methane from rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14):232-242. | |
43 | LIU X, LI R, JI M. Effects of two-stage operation on stability and efficiency in co-digestion of food waste and waste activated sludge[J]. Energies, 2019, 12(14): 2748. |
44 | NAM J, KIM D, KIM S, et al. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode[J]. Environmental Science and Pollution Research, 2016, 23(8): 7155-7161. |
45 | BALDI F, PECORINI I, IANNELLI R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J]. Renewable Energy, 2019, 143: 1755-1765. |
46 | 宋梓梅. 鸡粪与果蔬废弃物混合厌氧制氢特性研究[D]. 杨凌: 西北农林科技大学, 2018. |
SONG Zimei. Study on characteristics of hydrogen production from anaerobic co-fermentation of chicken manure whit fruit and vegetable wastes[D]. Yangling: Northwest A&F University, 2018. | |
47 | SAAD M F MAT, ABDUL RAHMAN N A, MOHD YUSOFF M Z. Hydrogen and methane productionfrom co-digestion of food wasteand chicken manure[J]. Polish Journal of Environmental Studies, 2019, 28(4): 2805-2814. |
48 | TUAN Y T R, ABDUL R N A, ARIFF A, et al. Evaluation of hydrogen and methane productionfrom co-digestion of chicken manureand food waste[J]. Polish Journal of Environmental Studies, 2019, 28(4): 3003-3014. |
49 | HAN W, LIU D N, SHI Y W, et al. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors[J]. Bioresource Technology, 2015, 180: 54-58. |
50 | SAADY N M C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13172-13191. |
51 | WU L, QIN Y, HOJO T, et al. Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle[J]. Energy, 2015, 87: 381-389. |
52 | ZÁBRANSKÁ J, ŠTĚPOVÁ J, WACHTL R, et al. The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates[J]. Water Science and Technology, 2000, 42(9): 49-56. |
53 | ARSLAN C, SATTAR A, JI C, et al. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling[J]. Biogeosciences, 2015, 12(21): 6503-6514. |
54 | 刘頔. 秸秆与污泥混合两相发酵产氢产甲烷的研究[D]. 天津: 天津大学, 2012. |
LIU Di. Hydrogen and methane production by co-digestion of cornstalk and sewage sludge in the two-stage fermentation process[D]. Tianjin: Tianjin University, 2012. | |
55 | GUO X M, TRABLY E, LATRILLE E, et al. Hydrogen production from agricultural waste by dark fermentation: a review[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10660-10673. |
56 | ROMÃO B B, BATISTA F R X, FERREIRA J S, et al. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate[J]. Applied Biochemistry and Biotechnology, 2014, 172(7): 3670-3685. |
57 | ZHONG J, STEVENS D K, HANSEN C L. Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR)[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15470-15476. |
58 | JAMIL Z, YUNUS N A M, MOHAMADANNUAR M S, et al. Anaerobic co-digestion of food waste for biohydrogen production[C]//Business Engineering and Industrial Applications Colloquium (BEIAC), Langkawi Malaysia, 2013. |
59 | ROBLEDO-NARVÁEZ P N, MUÑOZ-PÁEZ K M, POGGI-VARALDO H M, et al. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes[J]. Journal of Environmental Management, 2013, 128: 126-137. |
60 | MOTTE J C, TRABLY E, ESCUDIÉ R, et al. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion[J]. Biotechnology for Biofuels, 2013, 6(1): 164. |
61 | GHIMIRE A, TRABLY E, FRUNZO L, et al. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass[J]. Bioresource Technology, 2018, 248: 180-186. |
62 | CHOU C, WANG C, HUANG C, et al. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(5): 1550-1558. |
63 | LALIT B V, VENKATA M S, SARMA P N. Influence of reactor configuration on fermentative hydrogen production during wastewater treatment[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3305-3312. |
64 | CASTELLÓ E, NUNES FERRAZ-JUNIOR A D, ANDREANI C, et al. Stability problems in the hydrogen production by dark fermentation: possible causes and solutions[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109602. |
65 | GAVALA H, SKIADAS I, AHRING B. Biological hydrogen production in suspended and attached growth anaerobic reactor systems[J]. International Journal of Hydrogen Energy, 2006, 31(9): 1164-1175. |
66 | JUNG K, KIM D, SHIN H. A simple method to reduce the start-up period in a H2-producing UASB reactor[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1466-1473. |
67 | LI Z, CHEN Z, YE H, et al. Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis[J]. Waste Management, 2018, 78: 789-799. |
68 | ANBURAJAN P, PARK J, PUGAZHENDHI A, et al. Biohydrogen production from glucose using submerged dynamic filtration module: metabolic product distribution and flux-based analysis[J]. Bioresource Technology, 2019, 287: 121445. |
69 | DE G G, MUNTONI A, POLETTINI A, et al. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions[J]. Waste Management, 2013, 33(6): 1345-1361. |
70 | XIAO B, LIU J. Effects of various pretreatments on biohydrogen production from sewage sludge[J]. Science Bulletin, 2009, 54(12): 2038-2044. |
71 | WANG J, YIN Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4804-4823. |
72 | WANG Y, AI P, HU C, et al. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose[J]. International Journal of Hydrogen Energy, 2011, 36(1): 390-396. |
73 | CUI M, SHEN J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1120-1124. |
74 | HU B, CHEN S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3266-3273. |
75 | KARADAG D, PUHAKKA J A. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor[J]. International Journal of Hydrogen Energy, 2010, 35(20): 10954-10959. |
76 | SELBY K, MASCHER G, SOMERVUO P, et al. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502[J]. PloS One, 2017, 12(5): e176944. |
77 | COMMEAU N, JALOUSTRE S. Impact of temperature sampling strategy on the risk of Clostridium growth: application to rapid cooling of food in institutional food service facilities[J]. Food Control, 2013, 30(2): 642-648. |
78 | NIZ M Y K, ETCHELET I, FUENTES L, et al. Extreme thermophilic condition: an alternative for long-term biohydrogen production from sugarcane vinasse[J]. International Journal of Hydrogen Energy, 2019, 44(41): 22876-22887. |
79 | ZHANG C, LYU F, XING X. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production[J]. Bioresource Technology, 2011, 102(18): 8344-8349. |
80 | SINGH S, SARMA P M, LAL B. Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4206-4214. |
81 | RATTI R P, DELFORNO T P, OKADA D Y, et al. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing[J]. Microbiological Research, 2015, 173: 10-17. |
82 | SINHA P, PANDEY A. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03[J]. International Journal of Hydrogen Energy, 2014, 39(14): 7518-7525. |
83 | VALDEZ-VAZQUEZ I, PÉREZ-RANGEL M, TAPIA A, et al. Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium[J]. Fuel, 2015, 159: 214-222. |
84 | LEE D, SHOW K, SU A. Dark fermentation on biohydrogen production: pure culture[J]. Bioresource Technology, 2011, 102(18): 8393-8402. |
85 | ZAHEDI S, SOLERA R, MICOLUCCI F, et al. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste[J]. Waste Management, 2016, 49: 40-46. |
86 | JIA X, WANG Y, REN L, et al. Early warning indicators and microbial community dynamics during unstable stages of continuous hydrogen production from food wastes by thermophilic dark fermentation[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30000-30013. |
87 | JO J H, JEON C O, LEE D S, et al. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi[J]. Journal of Biotechnology, 2007, 131(3): 300-308. |
[1] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[2] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[3] | GAO Ningbo, HU Yadi, QUAN Cui. Research progress on thermochemical transformation and biological treatment of food waste [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 507-515. |
[4] | YU Zhengwei, ZHANG Xiaoxia, LEI Jie, LI Ao, WANG Guangying, DING Xiang, LONG Hongming. Comprehensive recovery of cerium and manganese from waste CeO x -MnO x -based SCR denitrification catalysts by reductive acid leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5122-5131. |
[5] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[6] | CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. |
[7] | WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502. |
[8] | CHEN Weifeng, SHANG Juan, XING Baihui, WEI Haotian, GU Chaohua, HUA Zhengli. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. |
[9] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
[10] | NIE Zimeng, YANG Dian, XIONG Yulu, LI Yingjie, TIAN Senlin, NING Ping. Performance and mechanism of electrolytic manganese slag slurry for flue gas desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1063-1072. |
[11] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[12] | LIU Ancang, CHEN Chuan, CHEN Jianzhong, CHEN Yuzhong, ZHU Chenliang, JIANG Yong, LU Fushen, WANG Shuangxi, ZHONG Ziyi, SONG Yibing. Application of catalytic reaction for CO2 resource utilization and marine antifouling in coastal power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5145-5155. |
[13] | Yaguang JIANG, Ruikang WANG, Qian WANG, Chunxi LI. Converting carbon tetrachloride to chloroform by using trichloroethene as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1114-1121. |
[14] | Zhanpeng SUN, Longlong LIANG, Chunyu LIU, Xinqi YU, Guang YANG. Analysis of entropy generation and classification performance of turbo air classifier [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3909-3915. |
[15] | Shuqi FANG,Junle CUI,Zhaochen SHI,Jing BAI,Chun CHANG,Pan LI. Medical solid waste pyrolysis and analysis of its product characteristics [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5587-5593. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |