Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 57-66.DOI: 10.16085/j.issn.1000-6613.2020-0358
• Chemical processes and equipment • Previous Articles Next Articles
Xiaoguang FAN1(), Lei YANG2, Min ZHANG1()
Received:
2020-03-11
Online:
2021-01-12
Published:
2021-01-05
Contact:
Min ZHANG
通讯作者:
张敏
作者简介:
范晓光(1982—),男,博士,讲师,硕士生导师,研究方向为微尺度过程传递及强化。E-mail:基金资助:
CLC Number:
Xiaoguang FAN, Lei YANG, Min ZHANG. Saturated pool boiling with HFE-7100 on a smooth copper surface under different pressures[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 57-66.
范晓光, 杨磊, 张敏. 不同压力下HFE-7100在光滑铜基表面的饱和池沸腾传热实验[J]. 化工进展, 2021, 40(1): 57-66.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0358
作者 | 模型关联式 |
---|---|
Rohsenow(1952)[ | |
Forster和Zuber(1955)[ | |
Stephan和Abdelsalam(1980)[ | |
Cooper(1984)[ | |
Gorenflo和Kenning(2010)[ | |
Jabardo等(2004)[ | |
Li等(2014)[ | |
Kim等(2016)[ | |
Zuber(1958)[ | |
Kutateladze(1948)[ | |
Guan等(2011)[ | |
Mudawar等(1997)[ | |
Bailey等(2006)[ | |
Kim等(2007)[ | |
Kandlikar(2001)[ | |
Liter和Kaviany(2001)[ |
作者 | 模型关联式 |
---|---|
Rohsenow(1952)[ | |
Forster和Zuber(1955)[ | |
Stephan和Abdelsalam(1980)[ | |
Cooper(1984)[ | |
Gorenflo和Kenning(2010)[ | |
Jabardo等(2004)[ | |
Li等(2014)[ | |
Kim等(2016)[ | |
Zuber(1958)[ | |
Kutateladze(1948)[ | |
Guan等(2011)[ | |
Mudawar等(1997)[ | |
Bailey等(2006)[ | |
Kim等(2007)[ | |
Kandlikar(2001)[ | |
Liter和Kaviany(2001)[ |
1 | DANG C, PENG Q, HUANG Q, et al. Experimental and analytical study on nucleate pool boiling heat transfer of R134a/R245fa zeotropic mixtures[J]. International Journal of Heat and Mass Transfer, 2018, 119: 508-522. |
2 | 张伟, 牛志愿, 李亚, 等. 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3764. |
ZHANG Wei, NIU Zhiyuan, LI Ya, et al. Pool boiling heat transfer characteristics on graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3764. | |
3 | JONES B J, MCHALE J P, GARIMELLA S V. The influence of surface roughness on nucleate pool boiling heat transfer[J]. Journal of Heat Transfer, 2009, 131(12): 121009. |
4 | 牟帅,赵长颖,徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1297-1301. |
MOU Shuai, ZHAO Changying, XU Zhiguo. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1297-1301. | |
5 | 马强, 吴晓敏, 朱敏. 表面润湿性对核态池沸腾影响的实验研究[J]. 工程热物理学报, 2019, 40(3): 635-638. |
MA Qiang, WU Xiaomin, ZHU Min. Experimental investigation of the effect of surface wettability on nucleate pool boiling[J]. Journal of Engineering Thermophysics, 2019, 40(3): 635-638. | |
6 | 陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8): 2798-2808. |
CHEN Hongxia, HUANG Linbin, GONG Yifei. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2798-2808. | |
7 | RAINEY K N, YOU S M, LEE S. Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72[J]. International Journal of Heat and Mass Transfer, 2003, 46(1): 23-35. |
8 | KWARK S M, AMAYA M, KUMAR R, et al. Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5199-5208. |
9 | CHEN H Z, CHEN G F, ZHOU X, et al. Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures[J]. International Journal of Heat and Mass Transfer, 2017, 112: 662-675. |
10 | GORENFLO D, CHANDRA U, KOTTHOFF S, et al. Influence of thermophysical properties on pool boiling heat transfer of refrigerants[J]. International Journal of Refrigeration, 2004, 27(5): 492-502. |
11 | SAKASHITA H. Bubble growth rates and nucleation site densities in saturated pool boiling of water at high pressures[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 734-743. |
12 | SAKASHITA H, Ono A. Boiling behaviors and critical heat flux on a horizontal plate in saturated pool boiling of water at high pressures[J]. International Journal of Heat and Mass Transfer, 2009, 52(3/4): 744-750. |
13 | KALANI A, KANDLIKAR S G. Enhanced pool boiling with ethanol at subatmospheric pressures for electronics cooling[J]. Journal of Heat Transfer, 2013, 135(11): 111002. |
14 | MUDAWAR I, ANDERSON T M. Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power-density electronic chips[J]. Lecture Notes in Mathematics, 1990, 843(6): 366-372. |
15 | DAHARIYA S, BETZ A R. High pressure pool boiling: Mechanisms for heat transfer enhancement and comparison to existing models[J]. International Journal of Heat and Mass Transfer, 2019, 141: 696-706. |
16 | ALVARIÑO P F, SIMON M L S, GUZELLA M D S, et al. Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 139: 269-279. |
17 | ROHSENOW W M. A method of correlating heat transfer data for surface boiling of liquids[J]. Transactions of ASME, 1952, 74: 969-976. |
18 | FORSTER H, ZUBER N. Dynamics of vapor bubbles and boiling heat transfer[J]. AIChE Journal, 1955, 1(4): 531-535. |
19 | STEPHAN K, ABDELSALAM M. Heat transfer correlations for natural convection boiling[J]. International Journal of Heat and Mass Transfer, 1980, 23: 73-87. |
20 | COOPER M G. Heat flow rates in saturated nucleate pool boiling a wide ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, 16: 157-239. |
21 | GORENFLO D, KENNING D. H2-pool boiling[M]. Heidelberg: Springer, 2010: 757-792. |
22 | JABARDO J M S, SILVA E F D, RIBATSKI G, et al. Evaluation of the rohsenow correlation through experimental pool boiling of halocarbon refrigerants on cylindrical surfaces[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2004, 26(2): 218-230. |
23 | LI Y Y, CHEN Y J, LIU Z H. A uniform correlation for predicting pool boiling heat transfer on plane surface with surface characteristics effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 809-817. |
24 | KIM J, JUN S, LAKSNARAIN R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. |
25 | ZUBER N. On the stability of boiling heat transfer[J]. Transactions of ASME, 1958, 80: 711-720. |
26 | KUTATELADZE S S. On the transition to film boiling under natural convection[J]. Kotloturbostroenie, 1948, 3: 10-12. |
27 | GUAN C K, KLAUSNER J F, MEI R. A new mechanistic model for pool boiling CHF on horizontal surfaces[J]. International Journal of Heat and Mass Transfer, 2011, 54: 3960-3969. |
28 | MUDAWAR I, HOWARD A H, GERSEY C O. An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces[J]. International Journal of Heat and Mass Transfer, 1997, 40: 2327-2339. |
29 | BAILEY W, YOUNG E, BEDUZ C, et al. Pool boiling study on candidature of pentane, methanol and water for near room temperature cooling[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego: Institute of Electrical and Electronics Engineers, 2006: 599-603. |
30 | KIM S J, BANG I C, BUONGIORNO J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4105-4116. |
31 | KANDLIKAR S G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Journal of Heat Transfer, 2001, 123(6): 1071-1079. |
32 | LITER S G, KAVIANY M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44 (22): 4287-4311. |
33 | MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1: 3-17. |
34 | PRIARONE A. Effect of surface orientation on nucleate boiling and critical heat flux of dielectric fluids[J]. International Journal of Thermal Sciences, 2005, 44(9): 822-831. |
35 | HSU Y Y, KAVIANY M. On the size range of active nucleation sites on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213. |
36 | SAKASHITA H, KUMADA T. Method for predicting boiling curves of saturated nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2001, 44(3): 673-682. |
37 | KIM J, KIM M H. On the departure behaviors of bubble at nucleate pool boiling[J]. International Journal of Multiphase Flow, 2006, 32(10/11): 1269-1286. |
38 | ZUBER N. Nucleate boiling. The region of isolated bubbles and the similarity with natural convection[J]. International Journal of Heat and Mass Transfer, 1963, 6(1): 53-78. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[8] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[9] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[10] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[11] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[12] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[15] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |