1 | SENTHIKUMAR K, NESME T, MOLLIER A, et al. Conceptual design and quantification of phosphorus flows and balances at the country scale: the case of France[J]. Global Biogeochemical. Cycles, 2012, 26(2): 1-14. | 2 | LI R D, YIN J, WANG W Y, et al. Transformation of phosphorus during drying and roasting of sewage sludge[J]. Waste Management, 2014, 34(7): 1211-1216. | 3 | FISHER F, BASTIAN C, HAPPE M, et al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite[J]. Bioresource Technology, 2011, 102(10): 5824-5830. | 4 | PIJUAN M, GUISASOLA A, BAEZA J A, et al. Aerobic phosphorus release linked to acetate uptake: influence of PAO intracellular storage compounds[J]. Biochemical Engineering Journal, 2005, 26(2/3): 184-190. | 5 | 彭信子, 刘志刚, 周思琦, 等. 市政污泥中磷的释放研究进展综述[J]. 净水技术, 2017, 36(1): 27-32. | 5 | PENG X Z, LIU Z G, ZHOU S Q, et al. Review of research and progress on phosphorus release from urban sewage sludge[J]. Water Purification Technology, 2017, 36(1): 27-32. | 6 | ZUPAN?I? G D, RO? M. Areobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration[J]. Bioresource Technology, 2008, 99(1): 100-109. | 7 | HE Z W, TANG C C, WANG L, et al. Transformation and release of phosphorus from waste activated sludge upon combined acid/alkaline treatment[J]. RSC Advances, 2017, 7: 35340-35345. | 8 | HERZEL H, KRüGER O, HERMANN L, et al. Sewage sludge ash—A promising secondary phosphorus source for fertilizer production[J]. Science of the Total Environment, 2016, 542(Part B): 1136-1143. | 9 | WEIGAND H, BERTAU M, HüBNER W, et al. RecoPhos: full-scale fertilizer production from sewage sludge ash[J]. Waste Management, 2013, 33(3): 540-544. | 10 | LI R D, TENG W C, LI Y L, et al. Coenrichment characteristics of phosphorus and heavy metal in incinerated sewage sludge ash[J]. Environmental Progress & Sustainable Energy, 2016, 35(4): 1027-1034. | 11 | TANG S Q, YAN F, ZHENG C M, et al. Novel calcium oxide-enhancement phosphorus recycling technique through sewage sludge pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 9167-9177. | 12 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215. | 12 | MENG X D, HUANG Q X, YAN J H, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7): 3208-3215. | 13 | SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 888-913. | 14 | WANG L P, CHANG Y Z, LI A M. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. | 15 | 王定美, 王跃强, 袁浩然, 等. 水热炭化制备污泥生物炭的碳固定[J]. 化工学报, 2013, 64(7): 2625-2632. | 15 | WANG D M, WANG Y Q, YUAN H R, et al. Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013, 64(7): 2625-2632. | 16 | XU Z J, ZHOU J, LIU Y D, et al. Effect of hydrothermal carbonization on dewatering performance of dyeing sludge[J]. RSC Advances, 2018, 8: 38574-38581. | 17 | ZHAO P T, GE S F, MA D C, et al. Effect of hydrothermal pretreatment on convective drying characteristics of paper sludge[J]. ACS Sustainable Chemistry & Engineering, 2014, 2: 665-671. | 18 | ZHAO P T, SHEN Y F, GE S F, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization[J]. Energy Conversion and Management, 2014, 78: 815-821. | 19 | ZHAO P T, CHEN H F, GE S F, et al. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion[J]. Applied Energy, 2013, 111(4): 199-205. | 20 | FENG Y H, YU T C, CHEN D Z, et al. Effect of hydrothermal treatment on the steam gasification behavior of sewage sludge: reactivity and nitrogen emission[J]. Energy & Fuels, 2018, 32(1): 581-587. | 21 | SHEN Y, HE C, CHEN X P, et al. Nitrogen removal and energy recovery from sewage sludge by combined hydrothermal pretreatment and CO2 gasification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 16629-16636. | 22 | 王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688-2696. | 22 | WANG X D, LI C X, YOU F T, et al. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 2688-2696. | 23 | FENG Y H, YU T C, MA KY, et al. Effect of hydrothermal treatment on the steam gasification behavior of sewage sludge: syngas quality and tar formation[J]. Energy & Fuels, 2018b, 32(6): 6834-6838. | 24 | HUA W W, HUANG W L, YUAN T, et al. Volatile fatty acids (VAFs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate[J]. Water Research, 2016, 90: 344-353. | 25 | ZHANG W Q, JIN X, DING Y K, et al. Composition of phosphorus in wetland soils by SMT and solution 31P-NMR analyses[J]. Environmental Science and Pollution Research, 2016, 23: 9046-9053. | 26 | GARCíA-ALBACETE M, MARTíN A, CARTAGENA M. Carmen fractionation of phosphorus biowaste: characterization and environmental risk[J]. Waste Management, 2012, 32(6): 1061-1068. | 27 | LI R D, ZHANG Z H, LI Y L, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge[J]. Chemosphere, 2015, 141: 57-61. | 28 | PARDO P, RAURET G, FERMíN J, et al. Shortened screening method for phosphorus fractionation in sediments: a complementary approach to the standards, measurements and testing harmonised protocol[J]. Analytica Chimica Acta, 2004, 508(2): 201-206. | 29 | 王涛. 城市污泥(水)热处理固体产物中磷的迁移转化及释放回收研究[D]. 长沙: 湖南大学, 2018.WANG T. Hydrothermal carbonization of municipal sewage sludge: investigation on the transformation release and recovery of phosphorus in hydrochar [D]. Changsha: Hunan University, 2018. | 30 | HUANG R X, FANG C, LU X W, et al. Transformation of phosphorus during (hydro)thermal treatment of solid biowaste: reaction mechanisms and implications for P reclamation and recycling[J]. Environmental Science & Technology, 2017, 51: 10284-10298. | 31 | ZHAO Y Z, REN Q Q, NA Y J. Phosphorus transformation from municipal sewage sludge incineration with biomass: formation of apatite phosphorus with high bioavailability[J]. Energy & Fuels, 2018, 32: 10951-10955. | 32 | DAI L C, TAN F L, WU B, et al. Immobilization of phosphorus in cow manure during hydrothermal carbonization[J]. Journal of Environmental Management, 2015, 157: 49-53. | 33 | OVSYANNIKOVA E, ARAUZO P J, BECKER G C, et al. Experimental and thermodynamic studies of phosphate behavior during the hydrothermal carbonization of sewage sludge[J]. Science of the Total Environment, 2019, 692: 147-156. | 34 | WANG T F, ZHAI Y B, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physiochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223-247. | 35 | XU Y F, HU H, LIU J Y, et al. pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation[J]. Chemical Engineering Journal, 2015, 267: 260-265. | 36 | WANG R K, WANG C B, ZHAO W H, et al. Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products[J]. Energy, 2019, 186: 115848. | 37 | 吕莉, 梁斌, 刘强, 等. 窑法磷酸中磷酸钙对P2O5反吸过程[J]. 化工学报, 2016, 67(10): 4399-4405. | 37 | Lü L, LIANG B, LIU Q, et al. Reactions between P2O5 and calcium phosphate in kiln phosphoric acid[J]. CIESC Journal, 2016, 67(10): 4399-4405. | 38 | ZHAO Y Z, REN Q Q, NA Y J. Promotion of cotton stalk on bioavailability of phosphorus in municipal sewage sludge incinerated ash[J]. Fuel, 2018, 214: 351-355. |
|