Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 906-915.DOI: 10.16085/j.issn.1000-6613.2019-0887
• Energy processes and technology • Previous Articles Next Articles
Chaoyu LIANG1(),Jiatang WANG1,He MIAO1,Yue HAN1,Xiang FENG1,Weiqiang YE2,Jinliang YUAN1()
Received:
2019-05-31
Online:
2020-04-03
Published:
2020-03-05
Contact:
Jinliang YUAN
梁超余1(),王家堂1,苗鹤1,韩越1,冯祥1,叶伟强2,袁金良1()
通讯作者:
袁金良
作者简介:
梁超余(1996—),男,硕士研究生,研究方向为高温固体氧化物燃料电池多孔电极介尺度模拟。E-mail:基金资助:
CLC Number:
Chaoyu LIANG,Jiatang WANG,He MIAO,Yue HAN,Xiang FENG,Weiqiang YE,Jinliang YUAN. Review on the mesoscale research of porous electrode structure in SOFC[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 906-915.
梁超余,王家堂,苗鹤,韩越,冯祥,叶伟强,袁金良. 高温固体氧化物燃料电池多孔电极结构介尺度研究方法[J]. 化工进展, 2020, 39(3): 906-915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0887
1 | 朱新坚.中国燃料电池技术现状与展望[J].电池,2004,34(3):202-203. |
ZHU X J.Current situation and prospect of fuel cell technology in China[J].Battery Bimonthly,2004,34(3):202-203. | |
2 | 尹志新,吴冬强,许枭,等.SOFC阳极材料的研究现状与分析[J].电源技术,2012,36(7):1062-1064. |
YIN Z X,WU D Q,XU X,et al.Research status and analysis of SOFC anode materials[J].Chinese Journal of Power Sources,2012,36(7):1062-1064. | |
3 | ANDERSSON M,YUAN J,SUNDÉN B.Chemical reacting transport phenomena and multiscale models for SOFCs[J].Advanced Computational Methods and Experiments in Heat Transfer X,2008,61:69. |
4 | 李家玉,王宝轩,陈美娜.碳基固体氧化物燃料电池理论模拟概述[J].中国工程科学,2013,15(2):39-49. |
LI J Y,WANG B X,CHEN M N.Overview of theoretical simulation of carbon-based solid oxide fuel cells[J].Engineering Sciences,2013,15(2):39-49. | |
5 | ANDERSSON M,YUAN J,SUNDÉN B.Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J].Applied Energy,2010,87(5):1461-1476. |
6 | RYAN E M,MUKHERJEE P P.Mesoscale modeling in electrochemical devices—A critical perspective[J].Progress in Energy and Combustion Science,2019,71:118-142. |
7 | NI M,LEUNG M K H,LEUNG D Y C.Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes[J].Journal of Power Sources,2007,168(2):369-378. |
8 | YUAN J,SUNDÉN B.On continuum models for heat transfer in micro/nano-scale porous structures relevant for fuel cells[J].International Journal of Heat & Mass Transfer,2013,58(1/2):441-456. |
9 | PARFITT D,CHRONEOS A,KILNER J A,et al.Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ[J].Physical Chemistry Chemical Physics,2010,12(25):6834-6836. |
10 | CHOI Y M,LIN M C,LIU M L.Computational study on the catalytic mechanism of oxygen reduction on La0.5Sr0.5MnOin solid oxide fuel cells[J].Angewandte Chemie,2010,38(47):7214-7219. |
11 | SHISHKIN M,ZIEGLER T.Hydrogen oxidation at the Ni/yttria-stabilized zirconia interface: a study based on density functional theory[J].The Journal of Physical Chemistry C,2010,114(25):11209-11214. |
12 | GALEA N M,LO J,ZIEGLER T.A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: reducing anode poisoning[J].Journal of Catalysis,2009,263(2):380-389. |
13 | HWANG B,KWON H,KO J,et al.Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying[J].Applied Surface Science,2018,429:87-94. |
14 | HAN Z,YANG Z,HAN M.Comprehensive investigation of methane conversion over Ni(111) surface under a consistent DFT framework: implications for anti-coking of SOFC anodes[J].Applied Surface Science,2019,480:243-255. |
15 | CHOI S,YOO S,KIM J,et al.Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ[J].Scientific Reports,2013,3:2426. |
16 | ROOHANDEH T,SAIEVAR-IRANIZAD E.A study on the formation and migration of oxygen vacancies in Ba0.5Sr0.5Co0.75Fe0.25O3-δ perovskite surfaces by first-principles modelling[J].Materials Chemistry and Physics,2019,226:371-377. |
17 | ALDER B J,WAINWRIGHT T E.Studies in molecular dynamics. Ⅰ. General method[J].The Journal of Chemical Physics,1959,31(2):459-466. |
18 | HERMET J,DUPÉ B,DEZANNEAU G.Simulations of REBaCo2O5.5 (REGd, La, Y) cathode materials through energy minimisation and molecular dynamics[J].Solid State Ionics,2012,216:50-53. |
19 | YOON M Y,JEONG S M,HWANG H J.Molecular dynamics simulation on oxide ion conduction of La-based perovskite oxides for SOFCs electrolyte[C]//Meeting Abstracts,The Electrochemical Society,2014. |
20 | LU H,DONG H,IQABL T,et al.Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells[J].International Communications in Heat & Mass Transfer,2018,91:40-47. |
21 | GALIN M,IVANOV-SCHITZ A,MAZO G.Molecular dynamics simulation of the structure and Ion transport in the Ce1–xGdxO2–δ|YSZ heterosystem[J].Crystallography Reports,2018,63(1):104-110. |
22 | XU J,SAKANOI R,HIGUCHI Y,et al.Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system[J].The Journal of Physical Chemistry C,2013,117(19):9663-9672. |
23 | XU J,HIGUCHI Y,OZAWA N,et al.Parallel large-scale molecular dynamics simulation opens new perspective to clarify the effect of a porous structure on the sintering process of Ni/YSZ multiparticles[J].ACS Applied Materials & Interfaces,2017,9(37):31816-31824. |
24 | DUIN A C T VAN,MERINOV B V,JANG S S,et al.ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia[J].The Journal of Physical Chemistry A,2008,112(14):3133-3140. |
25 | MERINOV B V,MUELLER J E,DUIN A C VAN,et al.ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell[J].Journal of Physical Chemistry Letters,2014,5(22):4039-4043. |
26 | LAI H Y,CHAN Y H,CHEN C K.Enhancement of ion conductivity for doped electrolytes in SOFC by MD modeling[J].Computational Materials Science,2018,144:265-272. |
27 | DUIN A C VAN,DASGUPTA S,LORANT F,et al.ReaxFF: a reactive force field for hydrocarbons[J].The Journal of Physical Chemistry A,2001,105(41):9396-9409. |
28 | LU H,HUA D,IQABL T,et al.Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells[J].International Communications in Heat and Mass Transfer,2018,91:40-47. |
29 | HATAE T,MATSUZAKI Y,YAMASHITA S,et al.Current density dependence of changes in the microstructure of SOFC anodes during electrochemical oxidation[J].Solid State Ionics,2009,180(23):1305-1310. |
30 | LIU S S,SAHA L C,ISKANDAROV A,et al.Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells[J].Communications Chemistry,2019,2(1):48. |
31 | SHI Y,CHEN L,CAI N.Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell[J].Journal of Power Sources,2011,196(13):5526-5537. |
32 | LI J,LIU G,CROISET E.Two-dimensional mechanistic solid oxide fuel cell model with revised detailed methane reforming mechanism[J].Electrochimica Acta,2017,249:216-226. |
33 | LI J H.Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J].Engineering,2016,2(3):276-285. |
34 | RYAN E M,TARTAKOVSKY A M,RECKNAGLE K P,et al.Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell[J].Journal of Power Sources,2011,196(1):287-300. |
35 | LIU W N,XIN S,PEDERSON L R,et al.Effect of nickel-hosphorus interactions on structural integrity of anode-supported solid oxide fuel cells[J].Journal of Power Sources,2010,195(21):7140-7145. |
36 | KONNO A,IWAI H,SAITO M,et al.A corrugated mesoscale structure on electrode-electrolyte interface for enhancing cell performance in anode-supported SOFC[J].Journal of Power Sources,2011,196(18):7442-7449. |
37 | CRONIN J S,CHEN-WIEGART Y C K,WANG J,et al.Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy[J].Journal of Power Sources,2013,233(7):174-179. |
38 | SHIKAZONO N,KANNO D,MATSUZAKI K,et al.Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images[J].Journal of the Electrochemical Society,2010,157(5):B665-B672. |
39 | BRUS G,IWAI H,MOZDZIERZ M,et al.Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance[J].Journal of Applied Electrochemistry,2017 (1):1-11. |
40 | 王灵权.格子Boltzmann方法在多孔介质流中的多尺度应用研究[D].重庆:重庆大学,2017. |
WANG L Q.A research on the lattice boltzmann method for its application in multi-scale porous flows[D].Chongqing:Chongqing University,2017. | |
41 | CHEN S,DOOLEN G D.Lattice boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364. |
42 | SUZUE Y,SHIKAZONO N,KASAGI N.Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction[J].Journal of Power Sources,2008,184(1):52-59. |
43 | PARADIS H,ANDERSSON M,SUNDÉN B.Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach[J].Heat & Mass Transfer,2016,52(8):1529-1540. |
44 | ESPINOZA M,SUNDÉN B,ANDERSSON M,et al.Analysis of porosity and tortuosity in a 2D selected region of solid oxide fuel cell cathode using the lattice boltzmann method[J].ECS Transactions,2015,65(1):59-73. |
45 | YAN Z,HE A,HARA S,et al.Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: correlations between microstructures and electrochemical performances[J].Energy Conversion and Management,2019,190:1-13. |
46 | CHEN L,HE Y L,KANG Q,et al.Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes[J].Journal of Computational Physics,2013,255:83-105. |
47 | LUCY L B.A numerical approach to the testing of the fission hypothesis[J].Astrophys Journal,1977,82:1013-1024. |
48 | GINGOLD R A,MONAGHAN J J.Smoothed particle hydrodynamics: theory and application to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society,1977,181(3):375-389. |
49 | MONAGHAN J,KOCHARYAN A.SPH simulation of multi-phase flow[J].Computer Physics Communications,1995,87(1/2):225-235. |
50 | RYAN E,AMON C.Modeling the species transport and reactions in an SOFC cathode using smoothed particle hydrodynamics[C]//ASME 2008 6th International Conference on Fuel Cell Science,Engineering and Technology. American Society of Mechanical Engineers,2008. |
51 | MONAGHAN J J,KAJTAR J B.SPH particle boundary forces for arbitrary boundaries[J].Computer Physics Communications,2009,180(10):1811-1820. |
52 | CUNDALL P A,STRACK O D.A discrete numerical model for granular assemblies[J].Geotechnique,1979,29(1):47-65. |
53 | SCHNEIDER L C R,MARTIN C L,BULTEL Y,et al.Discrete modelling of the electrochemical performance of SOFC electrodes[J].Electrochimica Acta,2006,52(1):314-324. |
54 | LICHTNER A,ROUSSEL D,RÖHRENS D,et al.Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations[J].Acta Materialia,2018,155:343-349. |
55 | MARTIN C L,SCHNEIDER L C R,OLMOS L,et al.Discrete element modeling of metallic powder sintering[J].Scripta Materialia,2007,55(5):425-428. |
56 | LIU X,MARTIN C L,DELETTE G,et al.Microstructure of porous composite electrodes generated by the discrete element method[J].Journal of Power Sources,2011,196(4):2046-2054. |
57 | MARTIN C L,YAN Z,JAUFFRES D,et al.Sintered ceramics with controlled microstructures: numerical investigations with the discrete element method[J].Journal of Ceramic Society of Japan,2016,124(4):340-345. |
58 | YAN Z,HARA S,SHIKAZONO N.Effect of powder morphology on the microstructural characteristics of La0.6Sr0.4Co0.2Fe0.8O3 cathode: a kinetic monte carlo investigation[J].International Journal of Hydrogen Energy,2017,42(17):12601-12614. |
59 | YAN Z,HE A,HARA S,et al.Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: microstructure optimizationvia artificial neural networks and multi-objective genetic algorithms[J].Energy Conversion and Management,2019,198:111916. |
60 | 任瑛,徐骥.蛋白质体系分子动力学模拟的前沿进展-从介科学角度重新审视[J].过程工程学报,2018,18(6):1126-1138. |
REN Y,XU J.Frontiers of molecular dynamics simulations of protein systems-reexamine from the mesoscience perspective[J].The Chinese Journal of Process Engineering,2018,18(6):1126-1138. | |
61 | WANG Y F,YUAN J,SUNDÉN B,et al.Coarse-grained molecular dynamics investigation of nanostructures and thermal properties of porous anode for solid oxide fuel cell[J].Journal of Power Sources,2014,254:209-217. |
62 | FU P,YAN M,ZENG M,et al.Sintering process simulation of a solid oxide fuel cell anode and its predicted thermophysical properties[J].Applied Thermal Engineering,2017,125:209-219. |
63 | MARRINK S J,JELGER R H,SERGE Y S,et al.The MARTINI force field: coarse grained model for biomolecular simulations[J].Journal of Physical Chemistry B,2007,111(27):7812. |
64 | KEVLAHAN N.Principles of multiscale modeling[J].Physics Today,2012,65(6):56-57. |
65 | KIM J H,LIU W K,LEE C.Multi-scale solid oxide fuel cell materials modeling[J].Computational Mechanics,2009,44(5):683-703. |
66 | XU H,DANG Z.Numerical investigation of coupled mass transport and electrochemical reactions in porous SOFC anode microstructure[J].International Journal of Heat and Mass Transfer,2017,109:1252-1260. |
67 | BIEBERLE A,GAUCKLER L J.State-space modeling of the anodic SOFC system Ni, H2-H2O|YSZ[J].Solid State Ionics,2002,146(1):23-41. |
68 | DANG Z,XU H.Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell[J].Energy,2016,107:295-304. |
69 | TADA T.Full atomistic kinetic Monte Carlo with direct counting approach for ion dynamics in electrochemical cells[C]//Meeting Abstracts.The Electrochemical Society,2018. |
70 | AN H,KIM Y,SHIKAZONO N.Three-dimensional numerical simulation of solid oxide fuel cell cathode based on lattice Boltzmann method with sub-grid scale models[J].International Journal of Hydrogen Energy,2017,42(34):21886-21900. |
71 | FRAGKOPOULOS I S,THEODOROPOULOS C.Multi-scale modelling of electrochemically promoted systems[J].Electrochimica Acta,2014,150:232-244. |
72 | MASTROPASQUA L,DONAZZI A,CAMPANARI S.Development of a multiscale SOFC model and application to axially‐graded electrode design[J].Fuel Cells,2019,19(2):125-140. |
73 | HUANG Q A,MEI S Z,XU L F,et al.Degradation of metal-supported SOFC and one powerful investigation method: multi-scale modeling and simulation[J].Applied Mechanics and Materials,2011,110-116:3376-3381. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[5] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[6] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[7] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[8] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[9] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[10] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[11] | CHEN Tujie, BI Kexin, QIU Tong, JI Xu, DAI Yiyang. Extraction of important reaction pathways for complex reaction network based on community detection algorithm [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 684-691. |
[12] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[13] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[14] | MAO Jijin, ZHANG Donghui, SUN Lili, LEI Qinhui, QU Jian. Boiling heat transfer and resistance characteristics of two types of sintered structures [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. |
[15] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |