Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (10): 4712-4721.DOI: 10.16085/j.issn.1000-6613.2019-0163
• SO4 -+RHCHR
Xiaojuan LI,Fengzhen LIAO(),Lanmei YE,Zhenglin LIU
Received:
2019-01-24
Online:
2019-10-05
Published:
2019-10-05
Contact:
Fengzhen LIAO
通讯作者:
李小娟
作者简介:
李小娟(1982—),女,博士,副教授,硕士生导师,研究方向为高效环境材料的制备与应用。E-mail:基金资助:
CLC Number:
Xiaojuan LI,Fengzhen LIAO,Lanmei YE,Zhenglin LIU. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721.
应用进展,李小娟,廖凤珍,叶兰妹,刘政霖. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的[J]. 化工进展, 2019, 38(10): 4712-4721.
1 | 蒲嘉懿 . 金属有机骨架材料衍生物活化过一硫酸氢钾降解水体中污染物[D]. 广州: 华南理工大学, 2017. |
PU J Y . Metal organic framework derivatives activate peroxymonosulfate to degrade pollutants in water[D]. Guangzhou: South China University of Technology, 2017. | |
2 | LIANG C , HUANG C F , CHEN Y J . Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15): 4091-4100. |
3 | 周宁 . 超声/过硫酸盐法去除水中卡马西平及腐殖酸的研究[D]. 武汉: 华中科技大学, 2015. |
ZHOU N . Study on the degradation of carbamazepine and humic acid in water using ultrasonic combined with persulfate method[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
4 | 徐朋飞, 郭怡秦, 王光辉, 等 . 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11): 58-60,80. |
XU P F , GUO Y Q , WANG G H , et al . Experrimental study on UV-activated persulfate for decolorization of methyl orange wastewater[J]. Environmental Engineering, 2017, 35(11): 58-60,80. | |
5 | 董紫君, 张茜, 代威力, 等 . 热活化过硫酸盐体系中碘离子的转化分析[J]. 中国给水排水, 2018, 34(15): 55-58,63. |
DONG Z J , ZHANG X , DAI W L , et al . Analysis on transformation of iodide in thermoactivated persulfate system[J]. China Water & Wastewater, 2018, 34(15): 55-58,63. | |
6 | YAN J , LEI M , ZHU L , et al . Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. |
7 | KAKAVANDI B . Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies[J]. Journal of Industrial & Engineering Chemistry, 2016, 45: 323-333. |
8 | MA Q , ZHANG X , GUO R , et al . Persulfate activation by magnetic -Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants[J]. Separation & Purification Technology, 2018, 210: 335-342. |
9 | CHEN L , ZUO X , YANG S , et al . Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 359: 373-384. |
10 | RAMOS M A V , YAN W , LI X Q , et al . Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure[J]. Journal of Physical Chemistry C, 2009, 113(33): 14591-14594. |
11 | BETTERTON E A , HOFFMANN M R . Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate[J]. Environmental Science & Technology, 1990, 24(12): 1819-1824. |
12 | GÁBOR L , JÓZSEF K , ZSUZSA B , et al . One-versus two-electron oxidation with peroxomonosulfate ion: reactions with iron(Ⅱ), vanadium(Ⅳ), halide ions, and photoreaction with cerium(Ⅲ)[J]. Inorganic Chemistry, 2009, 48(4): 1763-1773. |
13 | 丁耀彬 . 基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D]. 武汉: 华中科技大学, 2013. |
DING Y B . Advanced oxidation technology based on activation of peroxymonosulfate by transition metal oxides for degradation of organic pollutants[D]. Wuhan: Huazhong University of Science and Technology, 2013. | |
14 | SHARMA S B , MUDALIAR M , RAO B , et al . Radiation chemical oxidation of benzaldehyde, acetophenone, and benzophenone[J]. Journal of Physical Chemistry A, 1997, 101(45): 8402-8408. |
15 | FORSEY S . In situ chemical oxidation of creosote/coal tar residuals: experimental and numerical investigation[J]. Archives Roumaines de Pathologie Expérimentales et de Microbiologie, 2004, 28(2): 557-562. |
16 | LIANG C J , SU H . Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 472-475. |
17 | CLIFTON C L , HUIE R E . Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4 -· alcohols[J]. International Journal of Chemical Kinetics, 1989, 21(8): 677-687. |
18 | PADMAJA S , ALFASSI Z B , NETA P , et al . Rate constants for reactions of SO4 -· radicals in acetonitrile[J]. International Journal of Chemical Kinetics, 1993, 25(3): 193-198. |
19 | HUANG K C , ZHAO Z , HOAG G E , et al . Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560. |
20 | HU L , DENG G , LU W , et al . Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant Rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8): 1360-1372. |
21 | ZENG T , ZHANG X , WANG S , et al . Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science & Technology, 2015, 49(4): 2350-2357. |
22 | LIN K Y , CHANG H A . Zeolitic imidazole framework-67(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 40-45. |
23 | PU M , MA Y , WAN J , et al . Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal organic framework MIL-53(Fe) with Fe(Ⅱ)/Fe(Ⅲ) mixed-valence coordinative unsaturated iron center[J]. Catalysis Science & Technology, 2017, 7(5): 1129-1140. |
24 | PU M , GUAN Z , MA Y , et al . Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution[J]. Applied Catalysis A: General, 2018, 549: 82-92. |
25 | WANG M , YANG L , GUO C , et al . Bimetallic Fe/Ti-based metal-organic framework for persulfate-assisted visible light photocatalytic degradation of orange Ⅱ[J]. Chemistry Select, 2018, 3(13): 3664-3674. |
26 | LI H , WAN J , MA Y , et al . Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: mechanism, performance, and stability[J]. Journal of Hazardous Materials, 2016, 318: 154-163. |
27 | YANG Q , CHOI H , ALABED S R , et al . Iron-cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications[J]. Applied Catalysis B: Environmental, 2009, 88(3): 462-469. |
28 | BHATTACHARJEE S , CHOI J S , YANG S T , et al . Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation[J]. Journal of nanoscience and nanotechnology, 2010, 10(1): 135-141. |
29 | AI L , ZHANG C , LI L , et al . Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 148/149: 191-200. |
30 | DU J J , YUAN Y P , SUN J X , et al . New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1): 945-951. |
31 | MEI W , LI D , XU H , et al . Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light[J]. Chemical Physics Letters, 2018, 706: 694-701. |
32 | GAO Y , LI S , LI Y , et al . Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174. |
33 | LIN K Y , CHANG H A , HSU C J . Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water[J]. RSC Advances, 2015, 5(41): 32520-32530. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[12] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[13] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[14] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |