Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5410-5419.DOI: 10.16085/j.issn.1000-6613.2019-0537
• Materials science and technology • Previous Articles Next Articles
Xuzhong ZANG1,2(),Er SHI1,2(),Junping FU1,2,Tao YU1,2
Received:
2019-04-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Er SHI
通讯作者:
石尔
作者简介:
臧徐忠(1993—),女,硕士研究生,研究方向为多场耦合传热传质理论。E-mail:基金资助:
CLC Number:
Xuzhong ZANG,Er SHI,Junping FU,Tao YU. A review of magnetic field effects on flow and heat transfer in magnetic nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5410-5419.
臧徐忠,石尔,傅俊萍,余涛. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0537
1 | 周陆军. 磁流体流动及能量传递特性的多尺度研究[D]. 南京: 南京理工大学, 2010. |
ZHOU L J. Investigation of flow and heat transfer of magnetic fluid by multiscale method[D]. Nanjing: Nanjing University of Science & Techonlogy, 2010. | |
2 | 宣益民. 纳米流体能量传递理论与应用[J]. 中国科学: 技术科学, 2014, 44(3): 269-279. |
XUAN Y M. An overview on nanofluids and applications[J]. Science China: Technological Sciences, 2014, 44(3): 269-279. | |
3 | GHOFRANI A, DIBAEI M H, SIMA A H, et al. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field[J]. Experimental Thermal & Fluid Science, 2013, 49: 193-200. |
4 | GOHARKHAH M, SALARIAN A, ASHJAEE M, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field[J]. Powder Technology, 2015, 274: 258-267. |
5 | LAJVARDI M, MOGHIMI-RAD J, HADI I, et al. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect[J]. Journal of Magnetism & Magnetic Materials, 2010, 322(21): 3508-3513. |
6 | SHA L L, JU Y, ZHANG H, et al. Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field[J]. Applied Thermal Engineering, 2017, 113: 566-574. |
7 | GOHARKHAH M, ASHJAEE M, SHAHABADI M. Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field[J]. International Journal of Thermal Sciences, 2016, 99: 113-124. |
8 | MEI S Y, QI C, LUO T, et al. Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube[J]. International Journal of Heat and Mass Transfer, 2019, 128: 24-45. |
9 | AMANI M, AMERI M, KASAEIAN A. Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field[J]. Experimental Thermal & Fluid Science, 2017, 82: 439-449. |
10 | AZIZIAN R, DOROODCHI E, MCKRELL T, et al. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 68: 94-109. |
11 | 沙丽丽, 巨永林, 张华. 不同磁场作用下Fe3O4/water纳米流体层流流动对流传热系数的实验研究[J]. 化工学报, 2018, 69(4): 1349-1356. |
SHA L L, JU Y L, ZHANG H. Experimental investigation of convective heat transfer coefficient using Fe3O4/water nanofluids under different magnetic field in laminar flow[J].CIESC Journal, 2018, 69(4): 1349-1356. | |
12 | 吴治将, 殷少有. 磁性纳米流体Fe3O4-H2O对流换热特性研究[J]. 太阳能学报, 2015, 36(2): 517-521. |
WU J Z, YIN S Y. Study on convective heat transfer characteristics of Fe3O4-H2O magnetic nanofluids[J]. Acta Energiae Solars Sinica, 2015, 36(2): 517-521. | |
13 | MEI S Y, QI C, LIU M N, et al. Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube[J]. International Journal of Heat and Mass Transfer, 2019, 134: 707-721. |
14 | KARAMI E, RAHIMI M, AZIMI N. Convective heat transfer enhancement in a pitted microchannel by stimulation of magnetic nanoparticles[J]. Chemical Engineering and Processing:Process Intensification, 2018, 126: 156-167. |
15 | ASHJAEE M, GOHARKHAH M, KHADEM L A, et al. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink[J]. Heat & Mass Transfer, 2015, 51(7): 953-964. |
16 | HATAMI N, BANARI A K, MALEKZADEH A, et al. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube[J]. Physics Letters A, 2017, 381(5): 510-515. |
17 | GHOFRANI A, DIBAEI M H, SIMA A H, et al. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field[J]. Experimental Thermal & Fluid Science, 2013, 49: 193-200. |
18 | ZONNUZI S A, KHODABANDEH R, SAFARZADEH H, et al. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field[J]. Experimental Thermal and Fluid Science, 2018, 91: 155-165. |
19 | SHA L L, JU Y L, ZHANG H. The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids[J]. Applied Thermal Engineering, 2017, 126: 108-116. |
20 | SALEHPOUR A, SALEHI S, SALEHPOUR S, et al. Thermal and hydrodynamic performances of MHD ferrofluid flow inside a porous channel[J]. Experimental Thermal and Fluid Science, 2018, 90: 1-13. |
21 | 张晖. 方腔内纳米流体自然对流传热研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
ZHANG H. Experiment and simulation study of natural convective heat transfer of TiO2/ethylene glycol nanofluid[D]. Harbin: Harbin Engineering University, 2015. | |
22 | 许春龙. 磁重力补偿下磁流体的自然对流与沸腾传热实验研究[D]. 上海: 上海大学, 2015. |
XU C L. Study on natural convection and boiling heat transfer of magnetic fluid under magnetic gravity compensation[D]. Shanghai: Shanghai University, 2015. | |
23 | BORUJENI N N, ETESAMI N, ESFAHANY M N. Experimental investigation of natural convection heat transfer of Fe3O4/ethylene glycol nanofluid under magnetic field[J]. International Centre for Heat and Mass Transfer, 2011(6): 380-388. |
24 | 王正良. 磁场强化磁性液体自然对流传热的实验测量[J]. 仪器仪表学报, 2005, 26(7): 715-717. |
WANG Z L. Experiment measuring the natural convection transmitting heat in magnetic fluid strengthened by magnetic field[J]. Chinese Journal of Scientific Instrument, 2005, 26(7): 715-717. | |
25 | JOUBERT J C, SHARIFPUR M, SOLOMON A B, et al. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets[J]. Journal of Magnetism & Magnetic Materials, 2017, 443: 149-158. |
26 | KRASZEWSKA A, PYRDA L, DONIZAK J. High magnetic field impact on the natural convection behaviour of a magnetic fluid[J]. Heat and Mass Transfer., 2017, 54(8): 2383-2394. |
27 | SHI L, HE Y, HU Y W, et al. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field[J]. Energy Conversion and Management, 2018, 177: 249-257. |
28 | 梁龙, 张云峰, 张英才, 等. 磁场对热管传热性能的影响机理[J]. 动力工程学报, 2010, 30(11): 866-869. |
LIANG L, ZHANG Y F, ZHANG Y C, et al. Influence of magnetic field on heat transfer performance of heat pipe[J]. Journal of Chinese Society of Power Engineering, 2010, 30 (11): 866-869. | |
29 | YARAHMADI M, MOAZAMI G H, SHAFII M B. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes[J]. Experimental Thermal and Fluid Science, 2015, 68: 601-611. |
30 | BENNIA A, BOUAZIZ M N. CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4, magnetic nanofluid in the presence of a magnetic field[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 127-136. |
31 | ASFER M, MEHTA B, KUMAR A, et al. Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube[J]. International Journal of Heat and Fluid Flow, 2016, 59: 74-86. |
32 | 毕胜山, 史琳. 纳米流体沸腾传热研究进展[J]. 化工进展, 2007, 26(10): 1411-1418. |
BI S S, SHI L. Research progress of boiling heat transfer of nanofluids[J]. Chemical Industry and Engineering Progress, 2007, 26 (10): 1411-1418. | |
33 | ZONOUZIA S A, AMINFARA H, MOHAMMADPOURFARD M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF[J]. Applied Thermal Engineering, 2019, 151: 11-25. |
34 | 林璟, 方利国. 纳米流体强化传热技术及其应用新进展[J]. 化工进展, 2008, 27(4): 488-494. |
LIN J, FANG L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488-494. | |
35 | ABDOLLAHI A, SALIMPOUR M R, ETESAMI N. Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid[J]. Applied Thermal Engineering, 2017, 111: 1101-1110. |
36 | TAKAHASHI M, SHINBO K, OHKAWA R, et al. Nucleate pool boiling heat transfer of magnetic fluid in a magnetic field[J]. Journal of Magnetism and Magnetic Materials, 1993, 122(1/2/3): 301-304. |
37 | SESEN M, TEKSEN Y, SENDUR K, et al. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid[J]. Journal of Applied Physics, 2012, 112(6): 064320. |
38 | SHOJAEIAN M, YILDIZHAN M M, Ö COSKUN, et al. Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation[J]. Materials Research Express, 2016, 3(9): 96-102. |
39 | ÖZDEMIR M R, SADAGHIANI A K, MOTEZAKKER A R, et al. Experimental studies on ferrofluid pool boiling in the presence of external magnetic force[J]. Applied Thermal Engineering, 2018, 139: 598-608. |
40 | 刘俊红, 顾建明, 连之伟, 等. 水基磁性流体池沸腾传热强化的实验研究[J]. 核动力工程, 2004, 25(1): 23-25. |
LIU J H, GU J M, LIAN Z W, et al. Experimental study on enhanced boiling heat transfer of water-based magnetic fluid pools[J]. Nuclear Power Engineering, 2004, 25(1): 23-25. | |
41 | KHOSHMEHR H H, SABOONCHI A, SHAFII M B, et al. The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid[J]. Applied Thermal Engineering, 2014, 64(1/2): 331-338. |
42 | LI S Y, JI W T, ZHAO C Y, et al. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 128: 762-772. |
43 | FANG X D, WANG R, CHEN W W, et al. A review of flow boiling heat transfer of nanofluids[J]. Applied Thermal Engineering, 2015, 91: 1003-1017. |
44 | 周建阳, 罗小平, 李海燕, 等. 纳米粒子浓度对纳米流体流动沸腾传热及压降影响综合评价[J]. 化工进展, 2017, 36(1): 71-80. |
ZHOU J Y, LUO X P, LI H Y, et al. Comprehensive evaluation of the influence of nanoparticle concentrations on heat transfer and pressure drop of nanofluid flow boiling[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 71-80. | |
45 | 王二利, 罗小平. 矩形微槽道内磁纳米流体传热与流阻特性研究[J]. 石油化工设备, 2013, 42(1): 1-4. |
WANG E L, LUO X P. Research on heat transfer cofficent and flow resistance of magnetic nano-fluids in microchannels[J]. Petro-Chemical Equipment, 2013, 42(1): 1-4. | |
46 | VATANI A, WOODIFIELD P L, DINH T, et al. Degraded boiling heat transfer from hotwire in ferrofluid due to particle deposition[J]. Applied Thermal Engineering, 2018, 142: 255-261. |
47 | 唐杨. 微槽道中磁流体的CHF特性研究[D]. 广州: 华南理工大学, 2011. |
TANG Y. Study on the critical heat flux of magnetic fluids in microchannels[D]. Guangzhou: South China University of Technology, 2011. | |
48 | LEE T, LEE J H, JEONG Y H, et al. Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 101-106. |
49 | AMINFAR H, MOHAMMADPOURFARD M, RASOOL M. Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus[J]. Experimental Thermal and Fluid Science, 2014, 58: 156-169. |
50 | 刘俊红, 陆明琦, 刘辉, 等. 水基磁性流体水平加热棒下的池沸腾传热实验研究[J]. 应用基础与工程科学学报, 2004, 12(1): 61-66. |
LIU J H, LU M Q, LIU H, et al. Experiment study of pool boiling heat transfer of water-based magnetic fluid on a horizontal heater[J]. Journal of Basic Science and Engineering, 2004, 12(1): 61-66. | |
51 | SESEN M, TEKSEN Y, SAHIN B, et al. Boiling heat transfer enhancement of magnetically actuated nanofluids[J]. Applied Physics Letters, 2013, 102(16): 163107. |
52 | LEE J H, LEE T, JEONG Y H. Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2656-2663. |
53 | ISHIMOTO J, OKUBO M, KAMIYAMA S, et al. Bubble behavior in magnetic fluid under a nonuniform magnetic field[J]. International Journal of Multiphase Flow, 2008, 22(97): 382-387. |
54 | MOHAMMADPOURFARD M, AMINFAR H, KARIMI M. Numerical investigation of non-uniform transverse magnetic field effects on the swirling flow boiling of magnetic nanofluid in annuli[J]. International Communications in Heat & Mass Transfer, 2016, 75: 240-252. |
[1] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[2] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[3] | ZHU Qichen, WU Zhangyong, WANG Zhiqiang, JIANG Jiajun, LI Xiang. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. |
[4] | XIONG Xin, SU Qingzong, NONG Zengyao, WANG Yaxiong. Visualization and numerical analysis of heat transfer enhancement in the shell and tube latent thermal energy storage unit by the heating method [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4635-4643. |
[5] | CHE Zhongjun, ZHAO Lixin, GE Yiqing. Development status of magnetic field intensificating separation of multiphase media [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2839-2851. |
[6] | LIU Hongyi, YANG Guangxing, YU Hao. Recent advances of electromagnetic induction heating for sustainable catalytic technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1440-1452. |
[7] | ZHANG Donghui, CHEN Yi, MAO Jijin, SUN Lili, JIANG Weiyu. Influence of porosity and pore density on heat transfer performance for copper foam heat sink [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 69-74. |
[8] | Meibo XING, Zhiming GONG, Ruixiang WANG. Nucleate pool boiling heat transfer characteristics of perfluoroalkyl quaternary ammonium iodide [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2989-2997. |
[9] | Xuankai SUN,Maoliang WU,Zhongjun LIU,Hanting SUN. Effect of gradient magnetic field on the performance of air breathing PEMFC [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 924-929. |
[10] | Hongxia CHEN,Yuan SUN,Hongyang XIAO,Lin LIU. Numerical simulation of single bubble boiling on micro-pillar structure surface [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855. |
[11] | Pei LI, Bo QIAN, Chi ZHANG, Li ZHANG, Qingsong WEI. Selective laser melting forming lattice structures and their boiling heat transfer characteristics [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3028-3037. |
[12] | Wen CHEN, Zhangyong WU, Lianzhi ZHANG, Xiaoming CAI, Qichen ZHU. Preparation of oil-based NiFe2O4 magnetic fluid and stability of magnetic field settlement [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2665-2673. |
[13] | DONG Shuai, LI Shuang, LIU Lishuai, YE Xuemin. Review on the stability of conducting fluid flow under magnetic field [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 17-26. |
[14] | HU Yanxin, HUANG Kaixin, CHEN Sixu, WANG Shuangfeng, HUANG Jin. Research progress of flow and heat transfer characteristics with self-rewetting fluid [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4329-4342. |
[15] | HAN Zhonghe, PANG Yongchao. Influence of thermodynamic properties of air storage chamber on the performance of AA-CAES [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 47-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |