Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 711-719.DOI: 10.16085/j.issn.1000-6613.2018-1963
• Invited review • Previous Articles Next Articles
Received:
2018-09-29
Revised:
2018-11-23
Online:
2019-02-05
Published:
2019-02-05
作者简介:
孙丽丽(1961—),女,教授级高级工程师,总经理。E-mail:<email>sunlili@sei.com.cn</email>。
CLC Number:
Lili SUN. Innovating heat transfer enhancement application to improve the competitiveness of refinery and petrochemical enterprises[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 711-719.
孙丽丽. 创新强化传热策略与应用提升炼化企业竞争力[J]. 化工进展, 2019, 38(02): 711-719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1963
换热器 | 强化方式与设备元件 | 结构特点及强化传热机理 | 适用工况 |
---|---|---|---|
管壳式 | 壳程强化 | ||
螺纹管 | 换热管外螺纹结构扩大二次传热面 | 无相变、沸腾、冷凝 | |
表面多孔管① | 多孔结构增加气泡核心 | 沸腾 | |
T型翅片管 | T型通道增加气泡核心 | 沸腾 | |
锯齿形翅片管 | 减薄冷凝液膜厚度 | 冷凝 | |
纵槽管 | 减薄冷凝液膜厚度 | 冷凝 | |
折流杆 | 纵向流降低压降、消除振动 | 相变工况 | |
螺旋折流板 | 减少流动死区、减轻振动趋势 | 无相变、沸腾、冷凝 | |
管程强化 | |||
表面多孔管① | 多孔结构增加气泡核心 | 沸腾 | |
内插件 | 破坏边界层强化传热 | 无相变 | |
双面强化 | |||
横纹管 | 一次加工双面成形 | 无相变、沸腾、冷凝 | |
扭曲管 | 无折流板结构,管程、壳程流体螺旋状流动 | 无相变、沸腾、冷凝 | |
波纹管 | 波纹节距和深度确定强化传热效果与压降增加幅度 | 无相变、沸腾、冷凝 | |
高通量管① | 管内多孔表面强化沸腾传热,管外纵槽强化冷凝 | 立式安装的重沸器,管内沸腾、管外冷凝工况 | |
其他 | |||
缠绕管 | 降低热端温差,多股物流换热 | 无相变、沸腾、冷凝 | |
板式 | 螺旋板式 | 通道宽度灵活调节,纯逆流换热 | 含颗粒、高黏度流体换热 |
波纹板式 | 紧凑式换热设备,高湍流度 | 无相变、沸腾、冷凝 | |
板翅式 | 紧凑式换热设备,多股物流换热 | 无相变、沸腾、冷凝 |
换热器 | 强化方式与设备元件 | 结构特点及强化传热机理 | 适用工况 |
---|---|---|---|
管壳式 | 壳程强化 | ||
螺纹管 | 换热管外螺纹结构扩大二次传热面 | 无相变、沸腾、冷凝 | |
表面多孔管① | 多孔结构增加气泡核心 | 沸腾 | |
T型翅片管 | T型通道增加气泡核心 | 沸腾 | |
锯齿形翅片管 | 减薄冷凝液膜厚度 | 冷凝 | |
纵槽管 | 减薄冷凝液膜厚度 | 冷凝 | |
折流杆 | 纵向流降低压降、消除振动 | 相变工况 | |
螺旋折流板 | 减少流动死区、减轻振动趋势 | 无相变、沸腾、冷凝 | |
管程强化 | |||
表面多孔管① | 多孔结构增加气泡核心 | 沸腾 | |
内插件 | 破坏边界层强化传热 | 无相变 | |
双面强化 | |||
横纹管 | 一次加工双面成形 | 无相变、沸腾、冷凝 | |
扭曲管 | 无折流板结构,管程、壳程流体螺旋状流动 | 无相变、沸腾、冷凝 | |
波纹管 | 波纹节距和深度确定强化传热效果与压降增加幅度 | 无相变、沸腾、冷凝 | |
高通量管① | 管内多孔表面强化沸腾传热,管外纵槽强化冷凝 | 立式安装的重沸器,管内沸腾、管外冷凝工况 | |
其他 | |||
缠绕管 | 降低热端温差,多股物流换热 | 无相变、沸腾、冷凝 | |
板式 | 螺旋板式 | 通道宽度灵活调节,纯逆流换热 | 含颗粒、高黏度流体换热 |
波纹板式 | 紧凑式换热设备,高湍流度 | 无相变、沸腾、冷凝 | |
板翅式 | 紧凑式换热设备,多股物流换热 | 无相变、沸腾、冷凝 |
工程化问题 | 解决方案 |
---|---|
壳程强化传热膜传热系数太低 | 工艺介质无相变,采用螺纹管、横纹管、螺旋槽管等 |
工艺介质冷凝,采用纵槽管、锯齿形翅片管等 | |
工艺介质沸腾,采用T型翅片管、表面多孔管等 | |
传统结构压降高及振动 | 采用双弓形、三弓形、螺旋叶片、螺旋形折流板、折流杆等强化传热结构 |
提高壳程膜传热系数与压降增加、出现振动的矛盾 | 集成应用折流杆与螺纹管、螺旋折流板和螺纹管等 |
管程内层流流动导致膜传热系数低 | 采用内插件强化流体扰动、破坏管壁面的边界层 |
管内湍流流动状态下进一步强化膜传热系数 | 采用波纹管、翅片管、粗糙肋管、管内表面多孔管等 |
管程、壳程膜传热系数接近,需整体强化 | 采用波纹管、内波纹外螺纹管、扭曲管、管内表面多孔管外纵槽管等双面强化传热元件 |
工程化问题 | 解决方案 |
---|---|
壳程强化传热膜传热系数太低 | 工艺介质无相变,采用螺纹管、横纹管、螺旋槽管等 |
工艺介质冷凝,采用纵槽管、锯齿形翅片管等 | |
工艺介质沸腾,采用T型翅片管、表面多孔管等 | |
传统结构压降高及振动 | 采用双弓形、三弓形、螺旋叶片、螺旋形折流板、折流杆等强化传热结构 |
提高壳程膜传热系数与压降增加、出现振动的矛盾 | 集成应用折流杆与螺纹管、螺旋折流板和螺纹管等 |
管程内层流流动导致膜传热系数低 | 采用内插件强化流体扰动、破坏管壁面的边界层 |
管内湍流流动状态下进一步强化膜传热系数 | 采用波纹管、翅片管、粗糙肋管、管内表面多孔管等 |
管程、壳程膜传热系数接近,需整体强化 | 采用波纹管、内波纹外螺纹管、扭曲管、管内表面多孔管外纵槽管等双面强化传热元件 |
加工量/万吨·年-1 | 换热终温/℃ | 加工量/万吨·年-1 | 换热终温/℃ |
---|---|---|---|
800 | 290 | 1000 | 300 |
1000 | 320 | 1200 | 320 |
1200 | 310 |
加工量/万吨·年-1 | 换热终温/℃ | 加工量/万吨·年-1 | 换热终温/℃ |
---|---|---|---|
800 | 290 | 1000 | 300 |
1000 | 320 | 1200 | 320 |
1200 | 310 |
1 | BP世界能源统计年鉴[Z]. 2017. |
BP statistical review of world energy[Z]. 2017. | |
2 | Outlook for energy: a view to 2040[Z]. ExxonMobil Co., 2017. |
3 | 林宗虎, 汪军, 李瑞阳, 等 . 强化传热技术[M]. 北京: 化学工业出版社, 2007. |
LIN Zonghu , WANG Jun , LI Ruiyang , et al . Heat transfer enhancement techniques[M]. Beijing: Chemical Industry Press, 2007. | |
4 | 李志强 . 原油蒸馏工艺与工程[M]. 北京: 中国石化出版社, 2010. |
LI Zhiqiang . Crude oil distillation process and engineering[M]. Beijing: China Petrochemical Press, 2010. | |
5 | 刘家明, 王玉翠, 蒋荣兴 . 炼油装置工艺与工程[M]. 北京: 中国石化出版社, 2017. |
LIU Jiaming , WANG Yucui , JIANG Rongxing . Oil refining plant process and engineering[M]. Beijing: China Petrochemical Press, 2017. | |
6 | 李大东, 聂红, 孙丽丽 . 加氢处理工艺与工程[M]. 二版. 北京: 中国石化出版社, 2016. |
LI Dadong , NIE Hong , SUN Lili . Hydrotreating process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016. | |
7 | 林文珠, 曹嘉豪, 方晓明, 等 . 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(4): 1276-1286. |
LIN Wenzhu , CAO Jiahao , FANG Xiaoming ,et al . Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1276-1286. | |
8 | 肖武, 史朝霞, 姜晓滨, 等 . 考虑管壳式换热器传热强化的换热网络综合研究进展[J]. 化工进展, 2018, 37(4): 1267-1275. |
XIAO Wu , SHI Zhaoxia , JIANG Xiaobin , et al . Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1267-1275. | |
9 | KEMP I C . Pinch analysis and process integration: a user guide on process integration for the efficient use of energy[M]. 2nd ed. UK: Butterworth-Heinemann, 2007. |
10 | 冯霄 . 化工节能原理与技术[M]. 4版. 北京: 化学工业出版社, 2015. |
FENG Xiao . Principles and technologies of chemical energy saving[M]. 4th ed. Beijing: Chemical Industry Press, 2015. | |
11 | SMITH R , JOBSON M , CHEN L . Recent development in the retrofit of heat exchanger networks[J]. Applied Thermal Engineering, 2010, 30(16): 2281-2289. |
12 | ZHANG B J , LUO X L , CHEN Q L , et al . Heat integration by multiple hot discharges/feeds between plants[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10744-10754. |
13 | 孙丽丽, 蒋荣兴, 魏志强 . 创新系统化节能方法与应用方案研究[J]. 石油石化节能与减排, 2015, 5(4): 1-5. |
SUN Lili , JIANG Rongxing , WEI Zhiqiang . Application research on an innovative and systematic method for energy-saving[J]. Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry, 2015, 5(4): 1-5. | |
14 | 魏志强, 孙丽丽 . 基于夹点技术的炼油过程多装置热集成策略研究与应用[J]. 石油学报(石油加工), 2016, 32(2): 221-229. |
WEI Zhiqiang , SUN Lili . Strategy research and application for multi-units heat integration in refining enterprises based on pinch technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(2): 221-229. | |
15 | LIEW P Y , ALWI S R W , VARBANOV P S , et al . Centralised utility system planning for a total site heat integration network[J]. Computers & Chemical Engineering, 2013, 57(15): 104-111. |
16 | 戴厚良 . 芳烃技术[M]. 北京: 中国石化出版社, 2014. |
DAI Houliang . Aromatics technology[M]. Beijing: China Petrochemical Press, 2014. | |
17 | 朱冬生, 钱颂文 . 强化传热技术及其设计应用[J]. 化工装备技术, 2000, 21(6): 1-9. |
ZHU Dongsheng , QIAN Songwen . Heat transfer enhancement technology and application[J]. Chemical Equipment Technology, 2000, 21(6): 1-9. | |
18 | 林宗虎 . 管式换热器中的单相流体强化传热技术[J]. 自然杂志, 2013, 35(5): 313-319. |
LIN Zonghu . Heat transfer enhancement techniques for single-phase fluid tubular heat exchangers[J]. Chinese Journal of Nature, 2013, 35(5): 313-319. | |
19 | 张方方, 高莉萍 . 一种新型高效换热器在连续重整装置中的应用[J]. 石油化工设备技术, 2017, 38(4): 1-5. |
ZHANG Fangfang , GAO Liping . Application of a new high-efficiency heat exchanger in continuous catalytic reforming unit[J]. Petro-Chemical Equipment Technology, 2017, 38(4): 1-5. | |
20 | 秦永强 . 国产大型板壳式换热器在芳烃联合装置的应用[J]. 石油化工设备技术, 2017, 38(3): 1-5. |
QIN Yongqiang . Application of domestic large plate heat exchanger in aromatic complex[J]. Petro-Chemical Equipment Technology, 2017, 38(3): 1-5. | |
21 | 宋丹, 蹇江海, 张迎恺 . 扭曲管双壳程换热器的研究及性能分析[J]. 石油化工设备技术, 2012, 33(5): 1-3. |
SONG Dan , QIAN Jianghai , ZHANG Yingkai . Research and performance analysis of the double shell twisted tube heat exchanger[J]. Petro-Chemical Equipment Technology, 2012, 33(5): 1-3. | |
22 | 栾辉宝, 陶文铨, 朱国庆, 等 . 全焊接板式换热器发展综述[J]. 中国科学:技术科学, 2013, 43(9): 1020-1033. |
LUAN Huibao , TAO Wenquan , ZHU Guoqing , et al . A review of the development of all welded plate heat exchanger[J]. Science China Press, 2013, 43(9): 1020-1033. | |
23 | 盛在行 . 二元制冷技术在乙烯装置中的应用[J]. 化工进展, 2002, 21(9): 663-667. |
SHENG Zaihang .Technology of binary refrigeration applied to ethylene plant[J]. Chemical Industry and Engineering Progress, 2002, 21(9): 663-667. | |
24 | 华贲 . 炼油厂能量系统优化技术研究和应用[M]. 北京: 中国石化出版社, 2009. |
HUA Ben . Research and application of energy system optimization technology in refinery[M]. Beijing: China Petrochemical Press, 2009. |
[1] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
[2] | LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. |
[3] | LI Yongtong, LIU Jian, YANG Laishun. Thermo-hydraulic performance analysis of novel metal foam and pin fin hybrid heat sink [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2268-2276. |
[4] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
[5] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
[6] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
[7] | LIN Wenzhu, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on heat transfer of phase change material heat storage technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. |
[8] | Xin GU, Zhiyang ZHENG, Yuankun LUO, Xiaochao XIONG, Dabo ZHANG. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1688-1695. |
[9] | LIN Wenzhu, CAO Jiahao, FANG Xiaoming, ZHANG Zhengguo. Research progress of heat transfer enhancement of shell-and-tube heat exchanger [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1276-1286. |
[10] | XIAO Wu, SHI Zhaoxia, JIANG Xiaobin, LI Xiangcun, WU Xuemei, HE Gaohong, LUO Li. Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1267-1275. |
[11] | CHEN Liang, LIU Daoping, YANG Liang. Progress of heat transfer enhancement technology in phase change energy storage process [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 291-296. |
[12] | ZHAN Hongren, HUI Yao, WU Zhong. Research progress on heat transfer enhancement in closed thermosyphon [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2764-2775. |
[13] | CHEN Hongxia, HUANG Linbin, GONG Yifei. Progress on boiling heat transfer from porous structure and surface wettability [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2798-2808. |
[14] | ZHANG Haisong, XIE Guowei, ZHAN Hongren, BI Shihui. Progress of research on visualization of internal procedure of two-phase closed thermosyphon and its heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 791-801. |
[15] | OUYANG Xinping, SHU Tao, LIU Bingxiao. Experimental study of condensation heat transfer performance of R410A,R404A and R407C on horizontal enhanced tubes [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 481-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |