Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 805-812.DOI: 10.16085/j.issn.1000-6613.2018-0961
• Chemical processes and equipment • Previous Articles Next Articles
Shuaiwei GU(),Yuxing LI(
),Lin TENG,Cailin WANG,Qihui HU,Datong ZHANG,Xiao YE,Jinghan WANG
Received:
2018-05-09
Revised:
2018-10-08
Online:
2019-02-05
Published:
2019-02-05
Contact:
Yuxing LI
顾帅威(),李玉星(
),滕霖,王财林,胡其会,张大同,叶晓,王婧涵
通讯作者:
李玉星
作者简介:
<named-content content-type="corresp-name">顾帅威</named-content>(1994—),男,硕士研究生,研究方向为CO2管道输送技术。E-mail:<email>shuaiwei_upc@163.com</email>。|李玉星,教授,博士生导师,研究方向为CO2集输与输送技术。E-mail:<email>lyxupc@163.com</email>。
基金资助:
CLC Number:
Shuaiwei GU, Yuxing LI, Lin TENG, Cailin WANG, Qihui HU, Datong ZHANG, Xiao YE, Jinghan WANG. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 805-812.
顾帅威, 李玉星, 滕霖, 王财林, 胡其会, 张大同, 叶晓, 王婧涵. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(02): 805-812.
实验 | 压力/MPa | 温度/℃ | 泄漏孔径/mm | 相态 |
---|---|---|---|---|
1 | 8 | 40 | 1 | 超临界 |
2 | 8 | 40 | 2 | 超临界 |
3 | 8 | 40 | 2.764 | 超临界 |
4 | 8 | 40 | 3.568 | 超临界 |
5 | 7.5 | 40 | 1 | 超临界 |
6 | 8.5 | 40 | 1 | 超临界 |
7 | 9 | 40 | 1 | 超临界 |
实验 | 压力/MPa | 温度/℃ | 泄漏孔径/mm | 相态 |
---|---|---|---|---|
1 | 8 | 40 | 1 | 超临界 |
2 | 8 | 40 | 2 | 超临界 |
3 | 8 | 40 | 2.764 | 超临界 |
4 | 8 | 40 | 3.568 | 超临界 |
5 | 7.5 | 40 | 1 | 超临界 |
6 | 8.5 | 40 | 1 | 超临界 |
7 | 9 | 40 | 1 | 超临界 |
实验 | 压力/MPa | 温度/℃ | 泄漏孔径 /mm | N2 摩尔分数 /% | 相态 |
---|---|---|---|---|---|
8 | 8 | 40 | 1 | 2 | 超临界 |
9 | 8 | 40 | 1 | 4 | 超临界 |
10 | 8 | 40 | 1 | 6 | 超临界 |
实验 | 压力/MPa | 温度/℃ | 泄漏孔径 /mm | N2 摩尔分数 /% | 相态 |
---|---|---|---|---|---|
8 | 8 | 40 | 1 | 2 | 超临界 |
9 | 8 | 40 | 1 | 4 | 超临界 |
10 | 8 | 40 | 1 | 6 | 超临界 |
泄漏孔径/mm | 压力/MPa | 温度/K | 密度/kg·m-3 |
---|---|---|---|
1 | 3.6 | 304.4 | 77.473 |
2 | 2.6 | 298.6 | 53.756 |
2.764 | 1.5 | 294.3 | 28.334 |
泄漏孔径/mm | 压力/MPa | 温度/K | 密度/kg·m-3 |
---|---|---|---|
1 | 3.6 | 304.4 | 77.473 |
2 | 2.6 | 298.6 | 53.756 |
2.764 | 1.5 | 294.3 | 28.334 |
1 | International Energy AgencyI E. Energy technology perspectives 2012: pathways to a clean energy system[R]. France: International Energy Agency, 2012. |
2 | GUShuaiwei,GAOBeibei,TENGLin,et al. Monte carlo simulation of supercritical carbon dioxide adsorption in carbon slit pores[J]. Energy & Fuels,2017,31(9): 9717-9724. |
3 | 郭晓明, 毛东森, 卢冠忠,等. CO2加氢合成甲醇催化剂的研究进展[J]. 化工进展,2012,31(3): 477-488. |
GUOXiaoming,MAODongsen,LUGuanzhong,et al. Progress in catalysts for methanol synthesis from CO2 hydrogenation[J]. Chemical Industry and Engineering Progress,2012,31(3): 477-488. | |
4 | 喻健良, 郑阳光, 闫兴清,等. 工业规模CO2管道大孔泄漏过程中的射流膨胀及扩散规律[J]. 化工学报,2017,68(6): 2298-2305. |
YUJianliang,ZHENGYangguang,YANXingqing,et al. Under-expanded jets and dispersion during big hole leakage of high pressure CO2 pipeline in industrial scale[J]. CIESC Journal, 2017, 68(6): 2298-2305. | |
5 | WAREINGC J, FAIRWEATHEM, FALLES A E G, et al. Validation of a model of gas and dense phase CO2 jet releases for carbon capture and storage application[J]. International Journal of Greenhouse Gas Control, 2014, 20: 254-271. |
6 | 张大同, 滕霖, 李玉星, 等. 管输CO2焦耳-汤姆逊系数计算方法[J]. 油气储运, 2018(1):35-39. |
ZHANGDatong, TENGLin, LIYuxing, et al. A calculation method for Joule-Thomson coefficient of pipeline CO2[J]. Oil & Gas Storage and Transportation, 2018(1): 35-39. | |
7 | TENGLin, ZHANGDatong, LIYuxing, et al. Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery[J]. Applied Thermal Engineering, 2016, 108: 670-679. |
8 | BUMBP, DESIDERIU, QUATTROCCHIF, et al. Cost optimized CO2 pipeline transportation grid: a case study from italian industries[J]. World Academy of Science Engineering & Technology, 2011(58): 138-145. |
9 | 赵青, 李玉星, 李顺丽. 超临界二氧化碳管道杂质对节流温降的影响[J]. 石油学报, 2016, 37(1):111-116. |
ZHAOQing, LIYuxing, LIShunli. Influence of impurities in pipeline on the temperature drop of supercritical carbon dioxide throttling[J]. Acta Petrolei Sinica, 2016, 37(1): 111-116. | |
10 | MAHGEREFTEHH, BROWNS, DENTONG. Modelling the impact of stream impurities on ductile fractures in CO2 pipelines[J]. Chemical Engineering Science, 2012, 74: 200-210. |
11 | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
YUJianliang, GUOXiaolu, YANXingqing, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
12 | DRESCHERM, VARHOLMK, MUNKEJORDS T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457. |
13 | KOEIJERG D, BORCHJ H, DRESCHERM, et al. CO2 transport-depressurization, heat transfer and impurities[J]. Energy Procedia, 2011, 4(22): 3008-3015. |
14 | KOORNNEEFJ, SPRUIJTM, MOLAGM, et al. Uncertainties in risk assessment of CO2 pipelines[J]. Energy Procedia, 2009, 1(1): 1587-1594. |
15 | 喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9):3350-3357. |
YUJianliang, ZHUHailong, GUOXiaolu, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357. | |
16 | AHMADM, LOWESMITHB, KOEIJERG D, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2, release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353. |
17 | XIEQiyuan, TURan, JIANGXi, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Applied Energy, 2014, 130(5): 574-580. |
18 | LIKang, ZHOUXuejin, TURan, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71(21): 665-672. |
19 | LIKang, ZHOUXuejin, TURan, et al. An experimental investigation of supercritical CO2 accidental release from a pressurized pipeline[J]. Journal of Supercritical Fluids, 2016, 107: 298-306. |
20 | KOEIJERG D, BORCHJ H, JAKOBSENBJ, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization[J]. Energy Procedia, 2009, 1(1): 683-689. |
21 | ZHOUX, LIK, TUR, et al. A modelling study of the multiphase leakage flow from pressurised CO2 pipeline[J]. Journal of Hazardous Materials, 2016, 306: 286-294. |
22 | BOTROSK K, GEERLIGSJ, ROTHWELLB, et al. Effects of argon as the primary impurity in anthropogenic carbon dioxide mixtures on the decompression wave speed[J]. Canadian Journal of Chemical Engineering, 2016, 95(3): 440-448. |
23 | 冯文兴, 王兆芹, 程五一. 高压输气管道小孔与大孔泄漏模型的比较分析[J]. 安全与环境工程, 2009, 16(4): 108-110. |
FENGWenxing, WANGZhaoqin, CHENWuyi. Analysis of the nozzle model and hole model associated with high-pressure natural gas pipeline leakage[J]. Safety Environmental Engineering, 2009, 16(4): 108-110. | |
24 | 霍春勇, 董玉华, 余大涛, 等. 长输管线气体泄漏率的计算方法研究[J]. 石油学报, 2004, 25(1): 101-105. |
HUOChunyong, DONGYuhua, YUDatao, et al. Estimation of accidental gas release flow rate in long transmission pipelines[J]. Acta Petrolei Sinica, 2004, 25(1): 101-105. | |
25 | 杨昭, 张甫仁, 赖建波. 非等温长输管线稳态泄漏计算模型[J]. 天津大学学报(自然科学与工程技术版), 2005, 38(12): 1115-1121. |
YANGZhao, ZHANGFureng, LAIJianbo. Steady leakage calculation models of non-isothermal long gas pipeline[J]. Journal of Tianjin University, 2005, 38(12): 1115-1121. | |
26 | PHAML H H P, RUSLIR. A review of experimental and modelling methods for accidental release behaviour of high-pressurised CO2 pipelines at atmospheric environment[J]. Process Safety & Environmental Protection, 2016, 104:48-84. |
27 | MARTYNOVS, BROWNS, MAHGEREFTEHH, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J]. Process Safety & Environmental Protection, 2014, 92(1): 36-46. |
28 | MUNKEJORDS T, HAMMERM. Depressurization of CO2-rich mixtures in pipes: two-phase flow modelling and comparison with experiments[J]. International Journal of Greenhouse Gas Control, 2015, 37: 398-411. |
29 | 李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 合肥: 中国科学技术大学, 2016. |
LIKang. The physical mechanism of the supercritical CO2 leakage process in small scale laboratory conditions[D]. Hefei: University of Science and Technology of China, 2016. |
[1] | YANG Xin, XU Hong, HU Weixun, LIU Hongzuo, LONG Quanzhi, ZHU Liye. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. |
[2] | JIA Wenlong, SONG Shuoshuo, LI Changjun, WU Xia, YANG Fan, ZHANG Yuanrui. Progress of oily sludge extraction by supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6573-6585. |
[3] | HE Guangli, DOU Meiling. Progress on effect of hydrogen impurities on the performance of automotive fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4815-4822. |
[4] | WANG Junliang, YANG Lili, LIN Chunmian, PAN Zhiyan. Research progress of supercritical carbon dioxide in chemical reactions [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4127-4134. |
[5] | SUN Kai, WANG Wanli, HUANG Qunxing. Effect of typical impurities on the pyrolysis oil of waste plastics [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3499-3506. |
[6] | Xiaomin LIU, Bangqiang ZHANG, Bin AI, Yanmei YANG, Juan WANG, Haibo YANG, Hong CAI, Wei BAO. Development and current status of hydrogen quality standards for proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 703-708. |
[7] | YANG Dong, CHEN Lin. Visualization of transient density field in multiphase jet flow under transcritical/supercritical conditions [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6432-6440. |
[8] | HE Xuefeng, LIU Bo, ZHANG Shengen. Current status of control technology of Fe impurity in recycled aluminum alloy [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5251-5269. |
[9] | Yuannan XIONG. Smart water affair of coal-fired power plant based on improved combination prediction model of grey system and regression analysis [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 393-400. |
[10] | Tusong LIU, Xinling XIE, Zuzeng QIN, Youquan ZHANG, Yong ZHU, Yiling LAN. Formation of water alcohol starch gels for preparation of porous starch [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5219-5227. |
[11] | Xinyu LIU, Lingbo LI, Baozhong LI, Hongshan GUO. Progress in purification and reclamation of metamorphic amine [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4200-4209. |
[12] | Qian HUANG, Meilong FU, Zhongcong ZHAO. Experimental evaluation and thickening mechanism of long tube in supercritical CO2 fracturing fluid tackifier [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2939-2946. |
[13] | LÜ Donghui, LIU Guilian. Impurity-deficit based graphical method for integrating water network with regeneration reuse [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1671-1680. |
[14] | Bowen DU, Kang CHEN, Xin DING, Zhao JIANG, Tao FANG. Phase equilibrium for binary system of diphenyl ether-supercritical carbon dioxide [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1662-1670. |
[15] | CAO Chunhui, LI Weiyi. Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 3986-3992. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 949
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 437
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |