Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 876-884.DOI: 10.16085/j.issn.1000-6613.2018-0188
• Industrial catalysis • Previous Articles Next Articles
Jian SHI(),Jianming YANG(),Feng HUI,Jun YUAN,Suning MEI,Qinwei YU,Qian ZHANG,Yani LI,Weiqiang WANG,Fengwei ZHAO,Jian LÜ()
Received:
2018-01-22
Revised:
2018-08-24
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jianming YANG,Jian Lü
石坚(),杨建明(),惠丰,袁俊,梅苏宁,余秦伟,张前,李亚妮,王为强,赵锋伟,吕剑()
通讯作者:
杨建明,吕剑
作者简介:
<named-content content-type="corresp-name">石坚</named-content>(1994—),男,硕士研究生,研究方向为工业催化。E-mail:<email>a38860075@126.com</email>。|杨建明,研究员,研究方向为工业催化。E-mail:<email>yangjm204@163.com</email>|吕剑,研究员,研究方向为工业催化。E-mail:<email>Lujian204@263.net</email>
基金资助:
CLC Number:
Jian SHI, Jianming YANG, Feng HUI, Jun YUAN, Suning MEI, Qinwei YU, Qian ZHANG, Yani LI, Weiqiang WANG, Fengwei ZHAO, Jian LÜ. Progress on catalysts for catalytic oxidation of hydrogen chloride[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 876-884.
石坚, 杨建明, 惠丰, 袁俊, 梅苏宁, 余秦伟, 张前, 李亚妮, 王为强, 赵锋伟, 吕剑. 氯化氢氧化反应催化剂研究进展[J]. 化工进展, 2019, 38(02): 876-884.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0188
催化剂 | 质量/g | O2/HCl 摩尔比 | 反应温度 /℃ | 转化率 /% | 氯气产率 /g·gcat -1·h-1 |
---|---|---|---|---|---|
CuO | 0.5 | 1 | 450 | 5 | 0.15 |
2 | |||||
4 | |||||
RuO2 | 0.25 | 1 | 300 | 59 | 7.2 |
2 | 62 | 7.6 | |||
4 | 65 | 8 |
催化剂 | 质量/g | O2/HCl 摩尔比 | 反应温度 /℃ | 转化率 /% | 氯气产率 /g·gcat -1·h-1 |
---|---|---|---|---|---|
CuO | 0.5 | 1 | 450 | 5 | 0.15 |
2 | |||||
4 | |||||
RuO2 | 0.25 | 1 | 300 | 59 | 7.2 |
2 | 62 | 7.6 | |||
4 | 65 | 8 |
催化剂 | E/kJ·mol–1 | 催化剂 | E/kJ·mol–1 |
---|---|---|---|
Cu/Ce 复合氧化物 CuAlO2 CeO2 | 82 100 90 | Cr2O3 RuO2/SnO2 | 97 69 |
催化剂 | E/kJ·mol–1 | 催化剂 | E/kJ·mol–1 |
---|---|---|---|
Cu/Ce 复合氧化物 CuAlO2 CeO2 | 82 100 90 | Cr2O3 RuO2/SnO2 | 97 69 |
催化剂 | 反应条件 (摩尔比、温度) | X HCl /% | STY / | 参考文献 |
---|---|---|---|---|
RuO2/SnO2-Al2O3 | HCl∶O2 = 1∶2,T = 320℃ | 34 | 2.65 | [ |
CeO2 | HCl∶O2 = 1∶2,T = 430℃ | 29 | 0.92 | [ |
CeO2/ZrO2 | HCl∶O2 = 1∶4,T = 430℃ | 19.4 | 1.23 | [ |
Ce0.9Zr0.1O x | HCl∶O2 = 1∶9,T = 430℃ | 47.5 | 3.0 | [ |
Ce0.9Hf0.1O x | HCl∶O2 = 1∶9,T = 430℃ | 49.1 | 3.1 | [ |
γ-UO3 | HCl∶O2 = 1∶2,T = 500℃ | 22.8 | 0.72 | [ |
U3O8/ZrO2 | HCl∶O2 = 1∶2,T = 500℃ | 29.3 | 1.85 | [ |
Cu-K-La/ | HCl∶O2 = 2∶1,T = 360℃ | 83.9 | 0.66 | [ |
CuCrO2 | HCl∶O2 = 1∶2,T = 380℃ | 6.3 | 0.2 | [ |
CuCrO2-CeO2 | HCl∶O2 = 1∶2,T = 380℃ | 22.2 | 0.7 | [ |
CuO-CeO2/Y | HCl∶O2 = 1∶1, T = 410℃ | 73 | 4.45 | [ |
催化剂 | 反应条件 (摩尔比、温度) | X HCl /% | STY / | 参考文献 |
---|---|---|---|---|
RuO2/SnO2-Al2O3 | HCl∶O2 = 1∶2,T = 320℃ | 34 | 2.65 | [ |
CeO2 | HCl∶O2 = 1∶2,T = 430℃ | 29 | 0.92 | [ |
CeO2/ZrO2 | HCl∶O2 = 1∶4,T = 430℃ | 19.4 | 1.23 | [ |
Ce0.9Zr0.1O x | HCl∶O2 = 1∶9,T = 430℃ | 47.5 | 3.0 | [ |
Ce0.9Hf0.1O x | HCl∶O2 = 1∶9,T = 430℃ | 49.1 | 3.1 | [ |
γ-UO3 | HCl∶O2 = 1∶2,T = 500℃ | 22.8 | 0.72 | [ |
U3O8/ZrO2 | HCl∶O2 = 1∶2,T = 500℃ | 29.3 | 1.85 | [ |
Cu-K-La/ | HCl∶O2 = 2∶1,T = 360℃ | 83.9 | 0.66 | [ |
CuCrO2 | HCl∶O2 = 1∶2,T = 380℃ | 6.3 | 0.2 | [ |
CuCrO2-CeO2 | HCl∶O2 = 1∶2,T = 380℃ | 22.2 | 0.7 | [ |
CuO-CeO2/Y | HCl∶O2 = 1∶1, T = 410℃ | 73 | 4.45 | [ |
1 | TILL Z , VARGA T , RÉTI J , et al . Optimization strategies in a fixed-bed reactor for HCl oxidation[J].Industrial & Engineering Chemistry Research, 2017, 56(18): 5352-5359. |
2 | 毕荣山, 胡明明, 谭心舜, 等 . 光气化反应技术生产异氰酸酯的研究进展[J]. 化工进展, 2017, 36(5): 1565-1572. |
BI R S , HU M M , TAN X S , et al . Research progress on development of phosgenation reaction technology in isocyanate industry[J].Chemical Industry and Engineering Progress, 2017, 36(5): 1565-1572. | |
3 | SEKI K . Development of RuO2/rutile-TiO2 catalyst for industrial HCl oxidation process[J]. Catalysis Surveys from Asia, 2010, 14(3/4): |
168-175. | |
4 | LI C , SUN Y , DJERDJ I , et al .Shape-controlled CeO2 nanoparticles:stability and activity in the catalyzed HCl oxidation reaction[J]. ACS Catalysis, 2017, 7(10): 6453-6463. |
5 | HAMMES M , VALTCHEV M , ROTH M B , et al .A search for alternative Deacon catalysts[J].Applied Catalysis B: Environmental, 2013, 132/133: 389-400. |
6 | OVER H , SCHOMÄCKER R .What makes a good catalyst for the Deacon process?[J].ACS Catalysis, 2013, 3(5): 1034-1046. |
7 | AMRUTE A P , MONDELLI C , PÉREZ-RAMÍREZ J .Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation[J].Catalysis Science & Technology, 2012, 2(1): 257-265. |
8 | HESS F , OVER H .Rate-determining step or rate-determining configuration? The Deacon reaction over RuO2(110) studied by DFT-based KMC simulations[J].ACS Catalysis, 2017, 7(1): 128-138. |
9 | MÖLLER M , OVER H , SMARSLY B , et al .Electrospun ceria-based nanofibers for the facile assessment of catalyst morphological stability under harsh HCl oxidation reaction conditions[J].Catalysis Today, 2015, 253:207-218. |
10 | STUDT F , ABILD-PEDERSEN F , HANSEN H A , et al .Volcano relation for the Deacon process over transition-metal oxides[J].ChemCatChem, 2010, 2(1): 98-102. |
11 | AMRUTE A P , MONDELLI C , HEVIA M A G , et al .Temporal analysis of productsstudy of HCl oxidation on copper- and ruthenium-based catalysts[J].The Journal of Physical Chemistry C, 2011, 115(4): 1056-1063. |
12 | HAMMES M , SOERIJANTO H , SCHOMÄCKER R , et al .Niobium:activator and stabilizer for a copper-based Deacon catalyst[J].ChemCatChem, 2014, 6(1): 245-254. |
13 | SUN Y , LI C , GUO Y , et al .Catalytic oxidation of hydrogen chloride to chlorine over Cu-K-Sm/γ-Al2O3 catalyst with excellent catalytic performance[J]. Catalysis Today, 2017.doi.org/10.1016/j.cattod.. 04.014. |
14 | FENG K K , LI C W , GUO Y L , et al .Effect of KCl on the performance of Cu-K-La/γ-Al2O3 catalyst for HCl oxidation[J]. Chinese Journal of Catalysis, 2014(8): 1359-1363. |
15 | MONDELLI C , AMRUTE A P , SCHMIDT T , et al .A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation[J].Chemical Communications, 2011, 47(25): 7173. |
16 | AMRUTE A P , LARRAZÁBAL G O , MONDELLI C , et al . CuCrO2delafossite:astable copper catalyst for chlorine production[J].Angewandte Chemie International Edition, 2013, 52(37): 9772-9775. |
17 | OVER H . Atomic-scale understanding of the HCl oxidation over RuO2, anovel Deacon process[J]. The Journal of Physical Chemistry C, 2012, 116(12): 6779-6792. |
18 | MONDELLI C , AMRUTE A P , KRUMEICH F , et al .Shaped RuO2/SnO2 -Al2O3 catalyst for large-scale stable Cl2 production by HCl oxidation[J].ChemCatChem, 2011, 3(4): 657-660. |
19 | GESTERMANN F , OTTAVIANI A . Chlorine production with oxygen-depolarised cathodes on an industrial scale[J]. Modern Chlor-alkali Technology, 2001, 8:49-56. |
20 | KIM I H, JEONG M , HAN S W , et al . CO oxidation catalyzed by RuO2 nanoparticles supported on mesoporous Al2O3 prepared via atomic layer deposition[J]. Current Applied Physics, 2016, 16(10): 1407-1412. |
21 | HESS F , SACK C , LANGSDORF D , et al .Probing the activity of different oxygen species in the CO oxidation over RuO2(110) by combining transient reflection-absorption infrared spectroscopy with kinetic Monte Carlo simulations[J]. ACS Catalysis, 2017, 7(12): 8420-8428. |
22 | ERDTMAN E , ANDERSSON M , LLOYD SPETZ A , et al .Simulations of the thermodynamics and kinetics of NH3 at the RuO2(110) surface[J]. Surface Science, 2017, 656:77-85. |
23 | LATIMER A A , ABILD-PEDERSEN F , NØRSKOV J K .A theoretical study of methanol oxidation on RuO2(110):bridging the pressure gap[J]. ACS Catalysis, 2017, 7(7): 4527-4534. |
24 | LIU Z , LI C , SRIRAM V , et al .XANES study of elemental mercury oxidation over RuO2/TiO2 and selective catalytic reduction catalysts for mercury emissions control[J]. Fuel Processing Technology, 2016, 153:156-162. |
25 | LIU Z , SRIRAM V , LEE J .Heterogeneous oxidation of elemental mercury vapor over RuO2/rutile TiO2 catalyst for mercury emissions control[J]. Applied Catalysis B: Environmental, 2017, 207:143-152. |
26 | LÓPEZ N , GÓMEZ-SEGURA J , MARÍN R P , et al .Mechanism of HCl oxidation(Deacon process) over RuO2 [J]. Journal of Catalysis, 2008, 255(1): 29-39. |
27 | CRIHAN D , KNAPP M , ZWEIDINGER S , et al .Stable Deacon process for HCl oxidation over RuO2 [J]. Angewandte Chemie International Edition, 2008, 47(11): 2131-2134. |
28 | HEVIA M A G , AMRUTE A P , SCHMIDT T , et al . Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts[J]. Journal of Catalysis, 2010, 276(1): 141-151. |
29 | KIM Y D, SEITSONEN A P , WENDT S , et al .Characterization of various oxygen species on an oxide surface:RuO2(110)[J]. The Journal of Physical Chemistry B, 2001, 105(18): 3752-3758. |
30 | ZWEIDINGER S , CRIHAN D , KNAPP M , et al . Reaction mechanism of the oxidation of HCl over RuO2(110)[J].The Journal of Physical Chemistry C, 2008, 112(27): 9966-9969. |
31 | HIBI T , NISHIDA H , ABEKAWA H .Process for producing chlorine:US5871707[P]. 1999-02-16. |
32 | IWANAGA K , SEKI K , HIBI T , et al . The development of improved hydrogen chloride oxidation process[J].Sumitomo Kagaku, 2004, 1(1): 4-12. |
33 | MOSER M , MONDELLI C , AMRUTE A P , et al .HCl oxidation on IrO2 -based catalysts:from fundamentals to scale-up[J]. ACS Catalysis, 2013, 3(12): 2813-2822. |
34 | AMRUTE A P , MONDELLI C , SCHMIDT T , et al . Industrial RuO2-based Deacon catalysts:carrier stabilization and active phase content optimization[J]. ChemCatChem, 2013, 5(3): 748-756. |
35 | ESCH F , FABRIS S , ZHOU L , et al . Electron localization determines defect formation on ceria substrates[J].Science, 2005, 309(5735): 752-755. |
36 | 陈然, 高晓亚, 王晶, 等 .Ce改性Fe2O3催化剂对CO催化氧化的影响[J].化工进展, 2017, 36(10):3737-3742. |
CHEN R , GAO X Y , WANG J , et al .Effect of Ce addition on Fe2O3 catalyst towards CO catalytic oxidation[J].Chemical Industry and Engineering Progress, 2017, 36(10):3737-3742. | |
37 | CAI W , ZHAO Y , CHEN M , et al .The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation[J]. Chemical Engineering Journal, 2018, 333:414-422. |
38 | LORICERA C V , ALVAREZ-GALVAN M C , CAMPOS C H , et al . Sulfated Ce x Zr1- x O2 oxides.Surface properties and performance for methane oxidation under fuel-rich conditions[J]. Materials Chemistry and Physics, 2017, 200:223-232. |
39 | YU H , ZHONG S , ZHU B , et al .Synthesis and CO oxidation activity of 1D mixed binary oxide CeO2-LaO x supported gold catalysts[J].Nanoscale Research Letters, 2017, 12(1): 579. |
40 | 侯扶林, 李红欣, 杨阳, 等 . 特定形貌和多孔纳米CeO2的制备及其CO催化氧化研究进展[J]. 化工进展, 2017, 36(7): 2481-2487. |
HOU F L , LI H X , YANG Y , et al .Preparation and catalytic oxidation of CO with specific morphology andporous nano CeO2 [J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2481-2487. | |
41 | AMRUTE A P , MONDELLI C , MOSER M , et al .Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2 [J].Journal of Catalysis, 2012, 286:287-297. |
42 | 谢兴星, 费兆阳, 戴勇, 等 .铈基复合氧化物的结构及其对HCl催化氧化性能的影响[J]. 分子催化, 2014(6): 507-514. |
XIE X X , FEI Z Y , DAI Y , et al . Structure of ceria-based mixed oxides and its influence on HCl catalytic oxidation performance[J]. Journal of Molecular Catalysis(China), 2014(6): 507-514. | |
43 | KANZLER C H , URBAN S , ZALEWSKA-WIERZBICKA K , et al .Electrospun metal oxide nanofibres for the assessment of catalyst morphological stability under harsh reaction conditions[J].ChemCatChem, 2013, 5(9): 2621-2626. |
44 | FARRA R , GIRGSDIES F , FRANDSEN W , et al . Synthesis and catalytic performance of CeOCl in Deacon reaction[J]. Catalysis Letters, 2013, 143(10): 1012-1017. |
45 | MOSER M , MONDELLI C , SCHMIDT T , et al . Supported CeO2 catalysts in technical form for sustainable chlorine production[J].Applied Catalysis B:Environmental, 2013, 132/133:123-131. |
46 | CHEN X , XU X , FEI Z , et al . CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl oxidation[J]. Catalysis Science & Technology, 2016, 6(13): 5116-5123. |
47 | 徐希化, 楼家伟, 谢兴星, 等 . 非晶态ZrO2镶嵌的超细CeO2催化HCl氧化[J]. 无机化学学报, 2017, 33(3): 421-428. |
XU X H , LOU J W , XIE X X , et al .Superfine CeO2 embedded in a porous ZrO2 matrix for catalytic HCl oxidation[J].Chinese Journal of Inorganic Chemistry, 2017, 33(3): 421-428. | |
48 | CHEN X , LV G M , TANG J H , et al .Research on preparation of nano complex Ce-Cu-K catalyst loaded in the Y-type zeolite and its performance[J]. J. Chem. Eng. Chin. Univ., 2011, 25(1): 109-113. |
49 | CHEN X , DAI Y , FEI Z , et al .HCl oxidation to recycle Cl2 over a Cu/Ce composite oxide catalyst.Part 2. Single-tube-reactor simulation[J]. Industrial & Engineering Chemistry Research, 2015, 54(41): 9931-9937. |
50 | TANG J , CHEN X , FEI Z , et al . HCl oxidation to recycle Cl2 over a Cu/Ce composite oxide catalyst.Part 1.Intrinsic kinetic study[J].Industrial & Engineering Chemistry Research, 2013, 52(34): 11897-11903. |
51 | DAI Y , FEI Z , XU X , et al .Oxygen consumption rate model in HCl oxidation over a supported CuO-CeO2 composite oxide catalyst under lean oxygen condition[J]. The Canadian Journal of Chemical Engineering, 2016, 94(6): 1140-1147. |
52 | 杨成武, 曹烁, 左宜赞, 等 . 氯化氢催化氧化制氯气催化剂的失活与再生[J]. 过程工程学报, 2012(2): 349-352. |
YANG C W , CAO S , ZUO Y Z , et al .Regeneration of a copper based catalyst for sustainable Cl2 production by HCl oxidation[J]. The Chinese Journal of Process Engineering, 2012(2): 349-352. | |
53 | 谢兴星, 费兆阳, 邹冲, 等 .稀土掺杂对氯化氢氧化制氯气CuO-CeO2-SiO2催化剂结构和性能的影响[J].物理化学学报, 2015(6): 1153-1161. |
XIE X X , FEI Z Y , ZOU C , et al .Effects of rare-earth additives on structures and performances of CuO-CeO2-SiO2 catalysts for recycling Cl2 from HCl oxidation[J]. Acta Physico-Chimica Sinica, 2015(6): 1153-1161. | |
54 | 楼家伟, 费兆阳, 刘清, 等 . 氧化铈基HCl氧化循环制Cl2催化剂研究进展[J].化工进展, 2018, 37(5): 1804-1814. |
LOU J W , FEI Z Y , LIU Q , et al . Research progress in recycle oxidation of HCl to Cl2 over ceria basedcatalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1804-1814. | |
55 | FARRA R , GARCÍA-MELCHOR M , EICHELBAUM M , et al .Promoted ceria:astructural, catalytic, and computational study[J].ACS Catalysis, 2013, 3(10): 2256-2268. |
56 | AMRUTE A P , KRUMEICH F , MONDELLI C , et al . Depleted uranium catalysts for chlorine production[J]. Chemical Science, 2013, 4(5): 2209. |
57 | FEI Z , LIU H , DAI Y , et al .Efficient catalytic oxidation of HCl to recycle Cl2 over the CuO-CeO2 composite oxide supported on Y type zeolite[J]. Chemical Engineering Journal, 2014, 257: 273-280. |
58 | MOSER M , VILE G , COLUSSI S , et al . Structure and reactivity of ceria zirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides[J]. Journal of Catalysis, 2015, 331: 128-137. |
59 | MOSER M , AMRUTE A P , PÉREZ-RAMÍREZ J . Impact of feed impurities on catalysts for chlorine recycling[J]. Applied Catalysis B: Environmental, 2015, 162: 602-609. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[15] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |