Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 626-638.DOI: 10.16085/j.issn.1000-6613.2018-1065
• Fine chemicals • Previous Articles Next Articles
Received:
2018-05-23
Revised:
2018-10-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Hongbing JI
通讯作者:
纪红兵
作者简介:
陈宇(1982—),男,博士,副研究员。|纪红兵,教授,博士生导师,研究方向为绿色化工技术、化工园区管理。E-mail:<email>jihb@mail.sysu.edu.cn</email>。
基金资助:
CLC Number:
Yu CHEN, Hongbing JI. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 626-638.
陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(01): 626-638.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1065
催化剂 | 原料 | 反应器 | 结论 | 参考 文献 |
---|---|---|---|---|
Ga/ZSM-5 | 木质纤维素生物质 | 固定床和流化床 | Ga/ZSM-5催化剂能够提高芳香烃的产率;金属Ga能够提高脱羰和烯烃芳构化速率 | [24] |
M/ZSM-5(M= Fe、Co、Mn、Cu、Zr、Ce和Zn) | 木屑 | 固定床 | 负载Zn获得最高的液体产率,同时具有较高的H/C和较低的 O/C;Zn/ZSM-5 改善液体品质、获得更多液体产物 | [25] |
Co/ZSM-5、Ni-ZSM-5 | 山毛榉 | 原位小型反应器和中试循环流化床 | 液体产率降低但质量提高; Co/ZSM-5催化剂增加CO2的形成; Co/ZSM-5催化剂能够提高芳香烃含量 | [26] |
Ru/C | 松木乙醇有机溶剂木质素 | 两步水相加氢 | 芳香烃的产生通过重油中醚键和甲氧基的水解断裂;第一、二步加氢反应中碳转化率分别为35%和33% | [27] |
ZSM-5、Fe/ZSM-5 | 木屑 | Py-GC/MS | Fe/ZSM-5比ZSM-5催化剂具有更高的脱氧反应和产生更多环芳香烃; | [28] |
Fe/ZSM-5 | 山毛榉 | 固定床 | Fe/ZSM-5催化剂降低液体产物含量;提高热解产物的质量;提高液体有机相中氧原子的除去;产物主要为酚类和芳香烃化合物 | [29] |
6%La-HZSM-5 | 丙烷 | 固定床石英 反应器 | 随着温度升高强酸酸性位减少;催化剂提高轻质烯烃含量 | [30] |
ZSM-5、 丝光沸石、 β-沸石和 Y 沸石 | 木质素 | Py-GC-MS | 加入ZSM-5催化剂得到最高的芳香烃;Beta和Y 沸石有利于木质素衍生物的脱氧反应 | [31] |
HZSM-5(25)、HZSM-5(50)、HZSM-5(210)、H-β和H-USY | 纸浆黑液木质素 | Py-GC-MS | 低于650℃时,HZSM-5(25)催化剂促进单环芳香烃形成;H-USY 催化剂促进苯、甲苯和二甲苯芳香烃的生成 | [32] |
NiO/H-ZSM-5, NiO/H-BETA, NiO/H-Y | 硬木木质素 | 中试固定床 反应器 | 提高芳香烃的产率,降低含氧物质的产率;加入NiO/H-Y 催化剂时获得最高的液体和气体产率而焦炭产率最低;加入NiO/H-ZSM-5催化剂获得最高的芳香烃产率以及最低的含氧化合物 | [33] |
催化剂 | 原料 | 反应器 | 结论 | 参考 文献 |
---|---|---|---|---|
Ga/ZSM-5 | 木质纤维素生物质 | 固定床和流化床 | Ga/ZSM-5催化剂能够提高芳香烃的产率;金属Ga能够提高脱羰和烯烃芳构化速率 | [24] |
M/ZSM-5(M= Fe、Co、Mn、Cu、Zr、Ce和Zn) | 木屑 | 固定床 | 负载Zn获得最高的液体产率,同时具有较高的H/C和较低的 O/C;Zn/ZSM-5 改善液体品质、获得更多液体产物 | [25] |
Co/ZSM-5、Ni-ZSM-5 | 山毛榉 | 原位小型反应器和中试循环流化床 | 液体产率降低但质量提高; Co/ZSM-5催化剂增加CO2的形成; Co/ZSM-5催化剂能够提高芳香烃含量 | [26] |
Ru/C | 松木乙醇有机溶剂木质素 | 两步水相加氢 | 芳香烃的产生通过重油中醚键和甲氧基的水解断裂;第一、二步加氢反应中碳转化率分别为35%和33% | [27] |
ZSM-5、Fe/ZSM-5 | 木屑 | Py-GC/MS | Fe/ZSM-5比ZSM-5催化剂具有更高的脱氧反应和产生更多环芳香烃; | [28] |
Fe/ZSM-5 | 山毛榉 | 固定床 | Fe/ZSM-5催化剂降低液体产物含量;提高热解产物的质量;提高液体有机相中氧原子的除去;产物主要为酚类和芳香烃化合物 | [29] |
6%La-HZSM-5 | 丙烷 | 固定床石英 反应器 | 随着温度升高强酸酸性位减少;催化剂提高轻质烯烃含量 | [30] |
ZSM-5、 丝光沸石、 β-沸石和 Y 沸石 | 木质素 | Py-GC-MS | 加入ZSM-5催化剂得到最高的芳香烃;Beta和Y 沸石有利于木质素衍生物的脱氧反应 | [31] |
HZSM-5(25)、HZSM-5(50)、HZSM-5(210)、H-β和H-USY | 纸浆黑液木质素 | Py-GC-MS | 低于650℃时,HZSM-5(25)催化剂促进单环芳香烃形成;H-USY 催化剂促进苯、甲苯和二甲苯芳香烃的生成 | [32] |
NiO/H-ZSM-5, NiO/H-BETA, NiO/H-Y | 硬木木质素 | 中试固定床 反应器 | 提高芳香烃的产率,降低含氧物质的产率;加入NiO/H-Y 催化剂时获得最高的液体和气体产率而焦炭产率最低;加入NiO/H-ZSM-5催化剂获得最高的芳香烃产率以及最低的含氧化合物 | [33] |
1 | ZHAO Chen , Thomas BRUCK , LERCHER Johannes A . Catalytic deoxygenation of microalgae oil to green hydrocarbons[J]. Green Chemistry, 2013, 15: 1720-1739. |
2 | Hongwei YEN , HU I Chen , CHEN Chunyen . Microalgae-based biorefinery-from biofuels to natural products[J]. Bioresource Technology, 2013, 135: 166-174. |
3 | ZHAO Chenxi , JIANG Enchen , CHEN Huiai . Volatile production from pyrolysis of cellulose, hemicellulose and lignin[J]. Journal of the Energy Institute, 2017, 90: 902-913. |
4 | Abhijit SHROTRI , Hirokazu KOBAYASHI , Atsushi FUKUOKA . Catalytic conversion of structural carbohydrates and lignin to chemicals[J]. Advances in Catalysis, 2017, 60: 59-123. |
5 | Pooya AZADI , INDERWILDIA Oliver R , Ramin FARNOOD , et al . Liquid fuels, hydrogen and chemicals from lignin: a critical review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 506-523. |
6 | YU Haimiao , WU Zilu , CHEN Geng . Catalytic gasification characteristics of cellulose, hemicellulose and lignin[J]. Renewable Energy, 2018, 121: 559-567. |
7 | JIANG Weikun , WU Shunbin , LUCIA A , et al . A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 185-192. |
8 | Bijoy BISWAS , Rawel SINGH , Jitendra KUMAR , et al . Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals[J]. Bioresource Technology, 2016, 213: 319-326. |
9 | Jaeyong PARK , Asim RIAZ , Rizki INSYANI , et al . Understanding the relationship between the structure and depolymerization behavior of lignin[J]. Fuel, 2018, 217: 202-210. |
10 | YANG Le , SESHAN K , LI Yongdan . A review on thermal chemical reactions of lignin model compounds[J]. Catalysis Today, 2017, 298: 276-297. |
11 | FAN Liangliang , CHEN Paul , ZHOU Nan , et al . In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin[J]. Bioresource Technology, 2018, 247: 851-858. |
12 | Hoda SHAFAGHAT , Pouyasirous REZAEI , Donghoon RO , et al . In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 447-453. |
13 | JIANG Zhicheng , HU Changwei . Selective extraction and conversion of lignin in actual biomass to monophenols: a review[J]. Journal of Energy Chemistry, 2016, 25: 947-956. |
14 | WU Wei , Haoxi BEN , Art RAGAUSKAS , et al . Lignin pyrolysis components and upgrading-technology review[J]. BioEnergy Research, 2013, 6: 1183-1204. |
15 | WANG Shurong , LIN Haizhou , LU Bin , et al . Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2014, 108: 78-85. |
16 | JIANG Guozhan , NOWAKOWSKI Daniel J , BRIDGWATER Anthony V . A systematic study of the kinetics of lignin pyrolysis[J]. Thermochimica Acta, 2010, 498: 61-66. |
17 | 叶结旺,金春德,宋平安,等 . 碳酸钠催化碱木质素的热解动力学研究[J]. 林产化学与工业,2010,30(6):40-44. |
YE Jiewang , JIN Chunde , SONG Pingan , et al . Pyrolysis kinetics of alkali lignin catalyzed by sodium carbonate[J]. Chemistry and Industry of Forest Product, 2010, 30(6): 40-44. | |
18 | CHEN Zhihua , HU Mian , Zhu, Xiaolei, et al . Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[J]. Bioresource Technology, 2015, 192: 441-450. |
19 | CAI Junmeng , Xu Di , DONG Zhujun , et al . Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2705-2715. |
20 | ALMENDROS A I , Gabriel BLAZQUEZ , GALVEZ A R , et al . Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis[J]. Renewable Energy, 2017, 103: 825-835. |
21 | LONG Jinxing , XU Ying , WANG Tiejun , et al . Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination[J]. Applied Energy, 2015, 141: 70-79. |
22 | GUO Daliang , WU Shubin , LIU Bei , et al . Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Applied Energy, 2012, 95: 22-30. |
23 | HUANG Weiwei , GONG Feiyan , FAN Minghui , et al . Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt% lanthanum[J]. Bioresource Technology, 2012, 121: 248-255. |
24 | CHENG Yuting , Jungho JAE , SHI Jian , et al . Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional catalysts[J]. Angewandte Chemie: International Edition, 2012, 51(6): 1387-1390. Ga/ZSM |
25 | HE Peng , SHAN Wenpo , XIAO Ye , et al . Performance of Zn/ZSM-5 for in situ catalytic upgrading of pyrolysis bio-oil by methane[J]. Topics in Catalysis, 2015, 59(1): 86-93. |
26 | LIU Changjun , WANG Huaming , KARIM Ayman M , et al . Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-623. |
27 | Haoxi BEN , MU Wei , DENG Yulin , et al . Production of renewable gasoline from aqueous phase hydrogenation of lignin pyrolysis oil[J]. Fuel, 2013, 103: 1148-1153. |
28 | SUN Laizhi , ZHANG Xiaodong , CHEN Lei , et al . Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 342-346. |
29 | Elif SARAÇOĞLU , UZUN Basak Burcu, Esin APAYDIN-VAROL . Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21476-21486. |
30 | Roya POURIA , Leyla VAFI , Ramin KARIMZADEH . Propane catalytic cracking on pretreated La-ZSM-5 zeolite during calcination for light olefins production[J]. Journal of Rare Earths, 2017, 35(6): 542-550. |
31 | YU Yanqing , LI Xiangyu , SU Lu , et al . The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts[J]. Applied Catalysis A: General, 2012, 447/448: 115-123. |
32 | SHEN Dekui , ZHAO Jing , XIAO Rui , et al . Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 47-54. |
33 | Jelena MILOVANOVIC , Rafael LUQUE , Roman TSCHENTSCHER , et al . Study on the pyrolysis products of two different hardwood lignins in the presence of NiO contained-zeolites[J]. Biomass and Bioenergy, 2017, 103: 29-34. |
34 | WANG Wenliang , REN Xueyong , LI Lufei , et al . Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin[J]. Fuel Processing Technology, 2015, 134: 345-351. |
35 | Nevenka RAJIĆ , LOGAR Nataša Zabukovec, Aleksander RECNIK , et al . Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite[J]. Microporous and Mesoporous Materials, 2013, 176: 162-167. |
36 | ZHANG Junhua , DENG Haibo , LIN Lu . Wet Aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1- x Cu x O3 (x=0, 0.1, 0.2)[J]. Molecules, 2009, 14(8): 2747-2757. |
37 | 邓海波,林鹿,孙勇,等 . LaFeO3催化剂在木质素湿法氧化合成芳香醛反应中的活性与稳定性[J]. 催化学报,2008,29(8):753-757. |
DENG Haibo , LIN Lu , SUN Yong , et al . Activity and stability of LaFeO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes[J]. Chinese Journal of Catalysis, 2008, 29(8): 753-757. | |
38 | PENG Cuina , ZHANG Guangyi , YUE Junrong , et al . Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
39 | 陈彦广,王新惠,韩洪晶,等 . CaZr1-xFexO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报,2017,38(2):252-260. |
CHEN Yanguang , WANG Xinhui , HAN Hongjing , et al . Production of phenolic compounds from bagasse lignin via catalytic pyrolysis of CaZr1- x Fex O3 [J]. Chemical Journal of Chinese Universities, 2017, 38(2): 252-260. | |
40 | AMMENDOLA P , LISI L , PIRIOU B , et al . Rh-perovskite catalysts for conversion of tar from biomass pyrolysis[J]. Chemical Engineering Journal, 2009, 154(1-3): 361-368. |
41 | 陆强,李文涛,叶小宁,等 . W2C/AC催化快速热解松木磨木木质素[J]. 化工学报,2016,67(11):4843-4850. |
LU Qiang , LI Wentao , YE Xiaoning , et al . Fast catalytic pyrolysis of pine milled wood lignin with W2C/AC[J]. CIESC Journal, 2016, 67(11): 4843-4850. | |
42 | 王文亮,耿晶,李露霏,等 . 快速热解炭负载Cu-Zn对碱木质素热裂解生成单酚类化合物的催化性能[J]. 高等学校化学学报,2016,37(4):736-744. |
WANG Wenliang , GENG Jing , LI Lufei , et al . Catalytic properties of fast pyrolysis char loaded with Cu-Zn on alkali lignin pyrolysis for monophenols[J]. Chemical Journal of Chinese Universities, 2016, 37(4): 736-744. | |
43 | 欧阳新平,谭友丹,邱学青 . 木质素氧化降解制备单酚类化合物[J]. 燃料化学学报,2014,42(6):677-682. |
OUYANG Xinping , TAN Youdan , Xueqing QIE . Oxidative degradaton of lignin for producing monophenolic compounds[J]. Journal of Fuel Chemistry and Technology, 2014, 42(6): 677-682. | |
44 | CHEN Pengru , ZHANG Qi , SHU Riyang , et al . Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresource Technology, 2017, 226: 125-131. |
45 | SINGH Sunit Kumar, EKHE Jayant D . Cu-Mo doped zeolite ZSM-5 catalyzed conversion of lignin to alkyl phenols with high selectivity[J]. Catalysis Science & Technology, 2015, 5: 2117-2124. |
46 | BU Quan , LEI Hanwu , WANG Lu , et al . Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J]. Bioresource Technology, 2014, 162: 142-147. |
47 | 王昶,郝庆兰,卢定强,等 . 生物质催化热解制取轻质芳烃[J]. 催化学报,2008,29(9):907-912. |
WANG Chang , HAO Qinglan , LU Dingqiang , et al . Production of light aromatic hydrocarbons from biomass by catalytic pyrolysis[J]. Chinese Journal of Catalysis, 2008, 29(9): 907-912. | |
48 | ZHENG Yan , CHEN Dengyu , ZHU Xifeng . Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3 [J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 514-520. |
49 | CHOI Hang Seok, Dietrich MEIER . Fast pyrolysis of Kraft lignin-vapor cracking over various fixed-bed catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 207-212. |
50 | Zhiqiang MA , Ekaterina TROUSSARD , VAN BOKHOVEN Jeroen A . Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423/424: 130-136. |
51 | DEEPA Ayillath K , DHEPE Paresh L . Lignin depolymerization into aromatic monomers over solid acid catalysts[J]. ACS Catalysis, 2015, 5(1): 365-379. |
52 | Sushil ADHIKARI , Vaishnavi SRINIVASAN , Oladiran FASINA . Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites[J]. Energy Fuels, 2014, 28(7): 4532-4538. |
53 | Hyung LEE , Young-min KIM , Jungho JAE , et al . Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene[J]. Energy Conversion and Management, 2016, 129: 81-88. |
54 | ZHAO Yan , DENG Li , LIAO Bin , et al . Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy Fuels, 2010, 24(10): 5735-5740. |
55 | JACKSON Michael A , COMPTON David L , BOATENG Akwasi A . Screening heterogeneous catalysts for the pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85: 226-230. |
56 | QIAO Kai , SHI Xu , ZHOU Feng , et al . Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
57 | LEE Hyung Won, PARK Sung Hoon, Jong-Ki JEON , et al . Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets[J]. Catalysis Today, 2014, 222: 119-126. |
58 | ZHOU Lipeng , SHI Meiting , CAI Qiyong , et al . Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites:the role of acidity and pore structure[J]. Microporous and Mesoporous Materials, 2013, 169: 54-59. |
59 | WANG Fei , ZHENG Yunwu , HUANG Yuanbo , et al . Optimizing catalytic pyrolysis of rubber seed oil for light aromatics and anti-deactivation of ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 180-187. |
60 | Richard FRENCH , Stefan CZERNIK . Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Processing Technology, 2010, 91(1): 25-32. |
61 | Beatriz VALLE , GAYUBO Ana G , AGUAYO Andres T , et al . Selective production of aromatics by crude bio-oil valorization with a Nickel-modified HZSM-5 zeolite catalyst[J]. Energy Fuels, 2010, 24(3): 2060-2070. |
62 | Sébastien BAUMLIN , François BROUST , Frédéric BAZER-BACHI , et al . Production of hydrogen by lignins fast pyrolysis[J]. International Journal of Hydrogen Energy, 2006, 31: 2179-2192. |
63 | Meilina WIDYAWATI , CHURCH Tamara L , FLORIN Nicholas H , et al . Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide[J]. International Journal of Hydrogen Energy, 2011, 36: 4800-4813. |
64 | DEMIRBAS A . Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples[J]. Fuel, 2001, 80: 1885-1891. |
65 | CHEN Fangyuan , WU Chunfei , DONG Lisha , et al . Characteristics and catalytic properties of Ni/CaAlO x catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust[J]. Applied Catalysis B: Environmental, 2016, 183: 168-175. |
66 | Muhammad SHAHBAZ , Suzana YUSUP , Abrar INAYAT , et al . The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 468-476. |
67 | WANG Shurong , DAI Gongxin , YANG Haiping , et al . Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
68 | MULLEN Charles A , BOATENG Akwasi A . Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Processing Technology, 2010, 91(11): 1446-1458. |
69 | LIN Yuchuan , LI Chialiang , WAN Houpeng , et al . Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts[J]. Energy Fuels, 2011, 25(3): 890-896. |
70 | JONGERIUS Anna L , Robin JASTRZEBSKI , BRUIJNINCX Pieter C A , et al . CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates[J]. Journal of Catalysis, 2012, 285(1): 315-323. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[4] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[5] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[6] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[7] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[8] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[9] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[10] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[11] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[15] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |