Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 516-528.DOI: 10.16085/j.issn.1000-6613.2018-0918
• Materials science and technology • Previous Articles Next Articles
Xintong ZHOU(),Zhenxing LIU,Changjun LIU()
Received:
2018-05-04
Revised:
2018-07-03
Online:
2019-01-05
Published:
2019-01-05
Contact:
Changjun LIU
通讯作者:
刘昌俊
作者简介:
周昕瞳(1989—),男,博士研究生。E-mail:<email>xintongzhou@tju.edu.cn</email>。|刘昌俊,教授,博士生导师,研究方向为化学工艺。E-mail:<email>coronacj@tju.edu.cn</email>。
基金资助:
CLC Number:
Xintong ZHOU, Zhenxing LIU, Changjun LIU. Three-dimensional printing for the preparation of catalyst and adsorbent[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 516-528.
周昕瞳, 刘振星, 刘昌俊. 3D打印在催化和吸附材料制备领域的应用[J]. 化工进展, 2019, 38(01): 516-528.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0918
打印方法 | 类型 | 适用材料 |
---|---|---|
熔融沉积成型(FDM) | 挤出成型 | 热塑性塑料、 共晶系统金属等 |
直写成型(DIW) | 挤出成型 | 塑料、 陶瓷、 凝胶类材料等 |
立体光刻成型(SLA) | 光固化 | 光敏树脂 |
数字光处理 (DLP) | 光固化 | 光敏树脂 |
连续液面生产(CLIP) | 光固化 | 光敏树脂 |
选择性激光烧结(SLS) | 粉末成型 | 热塑性塑料、 金属、陶瓷粉末 |
选择性激光熔化(SLM) | 粉末成型 | 金属合金、 不锈钢 |
电子束熔化成型(EBM) | 粉末成型 | 金属合金 |
分层实体制造(LOM) | 层压 | 纸、 金属膜、 塑料薄膜 |
打印方法 | 类型 | 适用材料 |
---|---|---|
熔融沉积成型(FDM) | 挤出成型 | 热塑性塑料、 共晶系统金属等 |
直写成型(DIW) | 挤出成型 | 塑料、 陶瓷、 凝胶类材料等 |
立体光刻成型(SLA) | 光固化 | 光敏树脂 |
数字光处理 (DLP) | 光固化 | 光敏树脂 |
连续液面生产(CLIP) | 光固化 | 光敏树脂 |
选择性激光烧结(SLS) | 粉末成型 | 热塑性塑料、 金属、陶瓷粉末 |
选择性激光熔化(SLM) | 粉末成型 | 金属合金、 不锈钢 |
电子束熔化成型(EBM) | 粉末成型 | 金属合金 |
分层实体制造(LOM) | 层压 | 纸、 金属膜、 塑料薄膜 |
1 | ZHOU X T , LIU C J . Three-dimensional printing for catalytic applications: current status and perspectives[J]. Advanced Functional Materials, 2017, 27(30): 1701134. |
2 | RUIZ-MORALES J C , TARANCON A , CANALES-VAZQUEZ J , et al . Three dimensional printing of components and functional devices for energy and environmental applications[J]. Energy & Environmental Science, 2017, 10(4): 846-859. |
3 | PARRA-CABRERA C , ACHILLE C , KUHN S , et al . 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors[J]. Chemical Society Reviews, 2017, 47(1): 209-230. |
4 | 李宇, 李永峰, 吴青青, 等 .金属基体整体式催化剂的制备及在VOCs催化燃烧中的应用研究进展[J].化工进展, 2011, 30(4):759-765. |
LI Y , LI Y F , WU Q Q , et al . Preparation of monolithic catalyst with metallic substrate and application in catalytic combustion of VOCs[J].Chemical Industry and Engineering Progress, 2011, 30(4):759-765. | |
5 | 王学海, 吴昊, 刘忠生 . 整体式Mn基低温脱硝催化剂研究[J].化工进展, 2015, 34(s1):127-130. |
WANG X H , WU H , LIU Z S .Performance of monolithic Mn catalyst for low temperature SCR[J].Chemical Industry and Engineering Progress, 2015, 34(s1):127-130. | |
6 | OZDEMIR S , ONSAN Z I , YILDIRIM R . Selective CO oxidation over monolithic Au/MgO/Al2O3 catalysts[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(1): 58-64. |
7 | HORVATH J . Mastering 3D printing[M]. New York: Apress, 2014: 3-5. |
8 | GIBSON I , ROSEN D W , STUCKER B . Additive manufacturing technologies[M]. New York: Springer, 2010: 5-61. |
9 | TURNER B N , STRONG R , GOLD S A . A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. |
10 | JONES R , HAUFE P , SELLS E , et al . RepRap—the replicating rapid prototyper[J]. Robotica, 2011, 29: 177-191. |
11 | BOPARAI K S , SINGH R , SINGH H . Development of rapid tooling using fused deposition modeling: a review[J]. Rapid Prototyping Journal, 2016, 22(2): 281-299. |
12 | KALIA S , HALDORAI Y . Organic-inorganic hybrid nanomaterials[M]. Heidelberg: Springer, 2014: 249-281. |
13 | HONG J I , WINBERG P , SCHADLER L S , et al . Dielectric properties of zinc oxide/low density polyethylene nanocomposites[J]. Materials Letters, 2005, 59(4): 473-476. |
14 | HUANG D K , ZHANG B Y , ZHANG Y B , et al . Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction[J]. Journal of Materials Chemistry A, 2013, 1(4): 1415-1420. |
15 | SHIN S R , FARZAD R , TAMAYOL A , et al . A bioactive carbon nanotube-based Ink for printing 2D and 3D flexible electronics[J]. Advanced Materials, 2016, 28(17): 3280-3289. |
16 | WEI X J , LI D , JIANG W , et al . 3D printable graphene composite[J]. Scientific Reports, 2015, 5: 11181. |
17 | ZHANG D , CHI B H , LI B W , et al . Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals, 2016, 217: 79-86. |
18 | TORRADO PEREZ A R , ROBERSON D A , WICKER R B . Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials[J]. Journal of Failure Analysis and Prevention, 2014, 14(3): 343-353. |
19 | SKORSKI M R , ESENTHER J M , AHMED Z , et al . The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites[J]. Science and Technology of Advanced Materials, 2016, 17(1): 89-97. |
20 | CESARANO J , SEGALMAN R , CALVERT P . Robocasting provides moldless fabrication fiom slurry deposition[J]. Ceramic Industry, 1998, 148(4): 94-102. |
21 | ZHU C , HAN T Y J , DUOSS E B , et al . Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962. |
22 | LI V C F , DUNN C K , ZHANG Z , et al . Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures[J]. Scientific Reports, 2017, 7(1): 8018. |
23 | YAN P L , BROWN E , SU Q , et al . 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio[J]. Small, 2017, 13(38): 1701756. |
24 | PATAKY K , BRASCHLER T , NEGRO A , et al . Microdrop printing of hydrogel bioinks into 3D tissue-like geometries[J]. Advanced Materials, 2012, 24(3): 391-396. |
25 | HIGHLEY C B , RODELL C B , BURDICK J A . Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J]. Advanced Materials, 2015, 27(34): 5075-5079. |
26 | SMAY J E , GRATSON G M , SHEPHERD R F , et al . Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials, 2002, 14(18): 1279-1283. |
27 | LEWIS J A . Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State & Materials Science, 2002, 6(3): 245-250. |
28 | THERRIAULT D , WHITE S R , LEWIS J A . Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly[J]. Nature Materials, 2003, 2(4): 265-271. |
29 | GRATSON G M , XU M J , LEWIS J A . Microperiodic structures-direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981): 386. |
30 | 王小锋, 孙月花, 彭超群, 等 .直写成型用悬浮液的设计[J].无机材料学报, 2015(11):1139-1147. |
WANG X F , SUN Y H , PENG C Q , et al . Suspensions designed for direct ink writing[J].Journal of Inorganic Materials, 2015(11):1139-1147. | |
31 | CHANNELL G M , MILLER K T , ZUKOSKI C F . Effects of microstructure on the compressive yield stress[J]. AIChE Journal, 2000, 46(1): 72-78. |
32 | RAO R B , KRAFCIK K L , MORALES A M , et al . Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures[J]. Advanced Materials, 2005, 17(3): 289-293. |
33 | TUBIO C R , AZUAJE J , ESCALANTE L , et al . 3D printing of a heterogeneous copper-based catalyst[J]. Journal of Catalysis, 2016, 334: 110-115. |
34 | ZHANG J , XIAO P . 3D printing of photopolymers[J]. Polymer Chemistry, 2018, 9(13): 1530-1540. |
35 | HULL C W . Apparatus for production of three-dimensional objects by stereolithography: US4575330[P]. 1986-03-11. |
36 | FANTINO E , CHIAPPONE A , ROPPOLO I , et al . 3D printing of conductive complex structures with in situ generation of silver nanoparticles[J]. Advanced Materials, 2016, 28(19): 3712-3717. |
37 | CHIAPPONE A , FANTINO E , ROPPOLO I , et al . 3D printed PEG-based hybrid nanocomposites obtained by sol-gel technique[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5627-5633. |
38 | KOTZ F , ARNOLD K , BAUER W , et al . Three-dimensional printing of transparent fused silica glass[J]. Nature, 2017, 544(7650): 337-339. |
39 | ECKEL Z C , ZHOU C Y , MARTIN J H , et al . Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268): 58-62. |
40 | HALLORAN J W . Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research, 2016, 46: 19-40. |
41 | MEZA L R , DAS S , GREER J R . Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202): 1322-1326. |
42 | ESSA K , HASSANIN H , ATTALLAH M M , et al . Development and testing of an additively manufactured monolithic catalyst bed for HTP thruster applications[J]. Applied Catalysis A: General, 2017, 542: 125-135. |
43 | AMBROSI A , MOO J G S , PUMERA M . Helical 3D-printed metal electrodes as custom-shaped 3D platform for electrochemical devices[J]. Advanced Functional Materials, 2016, 26(5): 698-703. |
44 | AVRIL A , HORNUNG C H , URBAN A , et al . Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor[J]. Reaction Chemistry & Engineering, 2017, 2(2): 180-188. |
45 | 王虎 .纳米改性光固化快速成型树脂性能的研究[D].青岛:青岛科技大学, 2016. |
WANG H .Study on the properties of UV-curing rapid prototyping resin modified by nano-materials[D].Qingdao:Qingdao University of Science and Technology, 2016. | |
46 | CASTLES F , ISAKOV D , LUI A , et al . Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6: 8. |
47 | LEE J H , KO K H , PARK B O . Electrical and optical properties of ZnO transparent conducting films by the sol-gel method[J]. Journal of Crystal Growth, 2003, 247(1/2): 119-125. |
48 | ZOU H , WU S S , SHEN J . Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9): 3893-3957. |
49 | DEMIR M M , CASTIGNOLLES P , AKBEY U , et al . In-situ bulk polymerization of dilute particle/MMA dispersions[J]. Macromolecules, 2007, 40(12): 4190-4198. |
50 | FOSTER C W , DOWN M P , ZHANG Y , et al . 3D printed graphene based energy storage devices[J]. Scientific Reports, 2017, 7: 42233. |
51 | HWANG S , REYES E I , MOON K S , et al . Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process[J]. Journal of Electronic Materials, 2015, 44(3): 771-777. |
52 | ZHANG J H , ZHAO S C , ZHU M , et al . 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia[J]. Journal of Materials Chemistry B, 2014, 2(43): 7583-7595. |
53 | WU C T , FAN W , ZHOU Y H , et al . 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis[J]. Journal of Materials Chemistry, 2012, 22(24): 12288-12295. |
54 | WANG Z Y , WANG J J , LI M Y , et al . Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue[J]. Scientific Reports, 2014, 4: 5939. |
55 | SHI Z N , XU C , CHEN F , et al . Renewable metal-organic-frameworks-coated 3D printing film for removal of malachite green[J]. RSC Advances, 2017, 7(79): 49947-49952. |
56 | YAN C Y , JI Z Y , MA S H, et al . 3D printing as feasible platform for on-site building oil-skimmer for oil collection from spills[J]. Advanced Materials Interfaces, 2016, 3(13): 7. |
57 | LV J , GONG Z J , HE Z K , et al . 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24): 12435-12444. |
58 | MICHORCZYK P , HEDRZAK E , WEGRZYNIAK A . Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane[J]. Journal of Materials Chemistry A, 2016, 4(48): 18753-18756. |
59 | LI Y , CHEN S , CAI X , et al . Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation[J]. Journal of Materials Chemistry A, 2018, 6(11): 5695-5702. |
60 | WAN Y , SHI Y F , ZHAO D Y . Supramolecular aggregates as templates: ordered mesoporous polymers and carbons[J]. Chemistry of Materials, 2008, 20(3): 932-945. |
61 | CHANDRASEKARAN S , DUOSS E B , WORSLEY M A , et al . 3D printing of high performance cyanate ester thermoset polymers[J]. Journal of Materials Chemistry A, 2018, 6(3): 853-858. |
62 | LEWICKI J P , RODRIGUEZ J N , ZHU C , et al . 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties[J]. Scientific Reports, 2017, 7: 43401. |
63 | YANG K , GRANT J C , LAMEY P , et al . Diels-Alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication[J]. Advanced Functional Materials, 2017, 27(24): 11. |
64 | TAMON H , ISHIZAKA H , YAMAMOTO T , et al . Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors[J]. Carbon, 2000, 38(7): 1099-1105. |
65 | ELKHATAT A M , AL-MUHTASEB S A . Advances in tailoring resorcinol-formaldehyde organic and carbon gels[J]. Advanced Materials, 2011, 23(26): 2887-2903. |
66 | ZHU C , LIU T , QIAN F , et al . Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6): 3448-3456. |
67 | NATHAN-WALLESER T , LAZAR I M , FABRITIUS M , et al . 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials, 2014, 24(29): 4706-4716. |
68 | CHI K , ZHANG Z Y , XI J B , et al . Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanoconnposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16312-16319. |
69 | LAM C X F , MO X M , TEOH S H , et al . Scaffold development using 3D printing with a starch-based polymer[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 20(1/2): 49-56. |
70 | RAMBO C R , TRAVITZKY N , ZIMMERMANN K , et al . Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing[J]. Materials Letters, 2005, 59(8/9): 1028-1031. |
71 | LIU Z B , ZHANG M , BHANDARI B , et al . Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering, 2018, 220: 76-82. |
72 |
ZHOU X T , LIU C J . Three-dimensional printing of porous carbon structures with tailorable pore sizes[J]. Catalysis Today, 2018. DOI: 10.1016/j.cattod.2018.05.044.
DOI URL |
73 | KONAROVA M , ASLAM W , GE L , et al . Enabling process intensification by 3D printing of catalytic structures[J]. Chem. Cat. Chem., 2017, 9(21): 4132-4138. |
74 | FRAZIER W E . Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. |
75 | FARAHANI R D , DUBE M , THERRIAULT D . Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications[J]. Advanced Materials, 2016, 28(28): 5794-5821. |
76 | LIU X , JERVIS R , MAHER R C , et al . 3D-printed structural pseudocapacitors[J]. Advanced Materials Technologies, 2016, 1(9): 1600167. |
77 | CHEN L , TANG X , XIE P , et al . 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction[J]. Chemistry of Materials, 2018, 30(3): 799-806. |
78 | AZUAJE J , TUBIO C R , ESCALANTE L , et al . An efficient and recyclable 3D printed α Al2O3 catalyst for the multicomponent assembly of bioactive heterocycles[J]. Applied Catalysis A, General, 2017, 530: 203-210. |
79 | TUBIO C R , GUITIAN F , GIL A . Fabrication of ZnO periodic structures by 3D printing[J]. Journal of the European Ceramic Society, 2016, 36(14): 3409-3415. |
80 | TAYLOR S L , JAKUS A E , SHAH R N , et al . Iron and nickel cellular structures by sintering of 3D-printed oxide or metallic particle inks[J]. Advanced Engineering Materials, 2017, 19(11): 8. |
81 | THAKKAR H V , EASTMAN S , HAJARI A , et al . 3D-printed zeolite monoliths for CO2 removal from enclosed environments[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27753-27761. |
82 | COUCK S , LEFEVERE J , MULLENS S , et al . CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith[J]. Chemical Engineering Journal, 2017, 308: 719-726. |
83 | COUCK S , COUSIN-SAINT-REMI J , VAN DER PERRE S , et al . 3D-printed SAPO-34 monoliths for gas separation[J]. Microporous and Mesoporous Materials, 2018, 255: 185-191. |
84 | THAKKAR H , EASTMAN S , AL-MAMOORI A , et al . Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7489-7498. |
85 | LEFEVERE J , GYSEN M , MULLENS S , et al . The benefit of design of support architectures for zeolite coated structured catalysts for methanol-to-olefin conversion[J]. Catalysis Today, 2013, 216: 18-23. |
86 | DIAZ-MARTA A S , TUBIO C R , CARBAJALES C , et al . Three-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions[J]. ACS Catalysis, 2018, 8(1): 392-404. |
87 | AVILA P , MONTES M , MIRO E E . Monolithic reactors for environmental applications—A review on preparation technologies[J]. Chemical Engineering Journal, 2005, 109(1/2/3): 11-36. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |