Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 30-44.DOI: 10.16085/j.issn.1000-6613.2018-1169
• Chemical processes and equipment • Previous Articles Next Articles
Yankai LI(),Kai WANG,Guangsheng LUO()
Received:
2018-06-03
Revised:
2018-09-24
Online:
2019-01-05
Published:
2019-01-05
Contact:
Guangsheng LUO
通讯作者:
骆广生
作者简介:
李严凯(1992—),男,博士研究生。E-mail:<email>li-yk09@foxmail.com</email>。|骆广生,教授,博士生导师。E-mail:<email>gsluo@tsinghua.edu.cn</email>。
基金资助:
CLC Number:
Yankai LI, Kai WANG, Guangsheng LUO. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 30-44.
李严凯, 王凯, 骆广生. 液液微分散及其用于标准颗粒制备的研究进展[J]. 化工进展, 2019, 38(01): 30-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1169
触发因素/时间尺度 | 流型/时间尺度 | 动态界面张力的作用机制 | 动态界面张力的大小变化趋势(较平衡态) |
---|---|---|---|
表面活性剂的动态吸附/ms | Squeezing流/s | 充分吸附、达吸附平衡 | 不变— |
Dripping流/(ms~s) | 非充分吸附、未达吸附平衡 | 增大↑ | |
Jetting流/ms | 界面动态聚集(tip-streaming) | 减小↓ | |
互溶介质的相间传质/ms | Squeezing流/s | 充分传质、无动态效应 | 不变— |
Dripping流/(ms~s) | 非充分传质、非稳态 | 减小↓ | |
Jetting流/ms | 非充分传质、非稳态 | 减小↓ |
触发因素/时间尺度 | 流型/时间尺度 | 动态界面张力的作用机制 | 动态界面张力的大小变化趋势(较平衡态) |
---|---|---|---|
表面活性剂的动态吸附/ms | Squeezing流/s | 充分吸附、达吸附平衡 | 不变— |
Dripping流/(ms~s) | 非充分吸附、未达吸附平衡 | 增大↑ | |
Jetting流/ms | 界面动态聚集(tip-streaming) | 减小↓ | |
互溶介质的相间传质/ms | Squeezing流/s | 充分传质、无动态效应 | 不变— |
Dripping流/(ms~s) | 非充分传质、非稳态 | 减小↓ | |
Jetting流/ms | 非充分传质、非稳态 | 减小↓ |
项目 | 有机聚合物微球 | 无机微球 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
尺寸/μm | 0.1~1 | 1~10 | 10~100 | 0.1~1 | 1~10 | 10~100 | |||||||
方法 | 乳液聚合 | 分散聚合 | 种子聚合 | 悬浮聚合 | 燃烧法 | 化学沉淀 | 微乳液 | 溶胶-凝胶 | 机械粉碎 | ||||
单分散性 | √ | √ | √ | √ | √ | ||||||||
表面性质 | √ | √ | √ | ||||||||||
通用性 | √ | √ | √ |
项目 | 有机聚合物微球 | 无机微球 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
尺寸/μm | 0.1~1 | 1~10 | 10~100 | 0.1~1 | 1~10 | 10~100 | |||||||
方法 | 乳液聚合 | 分散聚合 | 种子聚合 | 悬浮聚合 | 燃烧法 | 化学沉淀 | 微乳液 | 溶胶-凝胶 | 机械粉碎 | ||||
单分散性 | √ | √ | √ | √ | √ | ||||||||
表面性质 | √ | √ | √ | ||||||||||
通用性 | √ | √ | √ |
1 | JENSEN K F .Microchemical systems: status, challenges, and opportunities[J]. AIChE Journal, 1999, 45(10): 2051-2054. |
2 | JENSEN K F .Flow chemistry-microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
3 | WHITESIDES G M .The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
4 | SHANG L , CHENG Y , ZHAO Y .Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
5 | NUNES J K , TSAI S , WAN J , et al .Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis[J]. Journal of physics D: Applied Physics, 2013, 11(46): 114002. |
6 | UTADA A S , CHU L Y , FERNANDEZ-NIEVES A , et al .Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bulletin, 2007, 32(9): 702-708. |
7 | BASARAN O A . Small-scale free surface flows with breakup: drop formation and emerging applications[J]. AIChE Journal,2002, 48(9): 1842-1848. |
8 | ADAMO A , BEINGESSNER R L , BEHNAM M , et al . On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
9 | MASCIA S , HEIDER P L , ZHANG H , et al .End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation[J]. Angewandte Chemie International Edition, 2013, 52(47): 12359-12363. |
10 | XIE L , SHEN Y , FRANKE D , et al .Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry[J]. Journal of the American Chemical Society, 2016, 138(41): 13469-13472. |
11 | NIGHTINGALE A M , PHILLIPS T W , BANNOCK J H , et al .Controlled multistep synthesis in a three-phase droplet reactor[J]. Nature Communications, 2014, 5: 3777. |
12 | WANG K , LUO G .Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
13 | ADAMO A , HEIDER P L , WEERANOPPANANT N , et al .Membrane-based, liquid-liquid separator with integrated pressure control[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10802-10808. |
14 | GU H , DUITS M H G , MUGELE F .Droplets formation and merging in two-phase flow microfluidics[J]. International Journal of Molecular Sciences, 2011, 12(4): 2572-2597. |
15 | MARRE S , JENSEN K F . Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3): 1183-1202. |
16 | XU S , NIE Z , SEO M , et al . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition[J]. Angewandte Chemie International Edition, 2005, 117(5): 734-738. |
17 | MASON T G , BIBETTE J . Shear rupturing of droplets in complex fluids[J]. Langmuir, 1997, 13(17): 4600-4613. |
18 | KACI M , ARAB-TEHRANY E , DESJARDINS I , et al .Emulsifier free emulsion: comparative study between a new high frequency ultrasound process and standard emulsification processes[J]. Journal of Food Engineering, 2017, 194: 109-118. |
19 | KACI M , MEZIANI S , ARAB-TEHRANY E , et al .Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1010-1017. |
20 | LEE C , LIN Y , LEE G .A droplet-based microfluidic system capable of droplet formation and manipulation[J]. Microfluidics and Nanofluidics, 2009, 6(5): 599-610. |
21 | SCHROEN K , BLIZNYUK O , MUIJLWIJK K , et al .Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production[J]. Current Opinion in Food Science, 2015, 3: 33-40. |
22 | SEEMANN R , BRINKMANN M , PFOHL T , HERMINGHAUS S .Droplet based microfluidics[J]. Reports on Progress in Physics, 2011, 1(75): 16601. |
23 | ROBERGE D M , DUCRY L , BIELER N , et al .Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?[J]. Chemical Engineering & Technology, 2005, 28(3): 318-323. |
24 | AJAEV V S , HOMSY G M .Modeling shapes and dynamics of confined bubbles[J]. Annual Review of Fluid Mechanics, 2006, 38: 277-307. |
25 | DARHUBER A A , TROIAN S M .Principles of microfluidic actuation by modulation of surface stresses[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 425-455. |
26 | 骆广生, 王凯, 徐建鸿, 等 .微化工过程研究进展[J]. 中国科学:化学, 2014, 44(9): 1404-1412. |
LUO GuangSheng , WANG Kai , XU JianHong , et al .Advances in research of microstructured chemical process[J]. SCIENTIA SINICA Chimica, 2014, 44(9): 1404-1412. | |
27 | GÜNTHER A , JENSEN K F .Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
28 | RAYLEIGH L .On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, 1(1): 4-13. |
29 | PLATEAU J A F .Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[M]. Paris: Gauthier-Villars, 1873. |
30 | AMBRAVANESWARAN B , SUBRAMANI H J , PHILLIPS S D , et al .Dripping-jetting transitions in a dripping faucet[J]. Physical Review Letters, 2004, 93(3): 34501. |
31 | HARKINS W D , BROWN F E .The determination of surface tension (free surface energy), and the weight of falling drops—the surface tension of water and benzene by the capillary height method[J]. Journal of the American Chemical Society, 1919, 41: 499-524. |
32 | VINET B , GARANDET J P , CORTELLA L .Surface tension measurements of refractory liquid metals by the pendant drop method under ultrahigh vacuum conditions: extension and comments on Tate's law[J]. Journal of Applied Physics, 1993, 73(8): 3830-3834. |
33 | CARDOSO V , DIAS O J .Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings[J]. Physical Review Letters, 2006, 96(18): 181601. |
34 | GARSTECKI P , GITLIN I , DILUZIO W , et al .Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13): 2649-2651. |
35 | GANAN-CALVO A M , GORDILLO J M .Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2001, 87(27): 274501. |
36 | UTADA A S , FERNANDEZ-NIEVES A , STONE H A , et al .Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters, 2007, 99(9): 094502. |
37 | DE MENECH M , GARSTECKI P , JOUSSE F , et al .Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141-161. |
38 | GARSTECKI P , FUERSTMAN M J , STONE H A , et al .Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
39 | SU Y , KUIJPERS K , HESSEL V , et al .A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81. |
40 | SHEN Y , ABOLHASANI M , CHEN Y , et al . In-situ microfluidic study of biphasic nanocrystal ligand-exchange reactions using an oscillatory flow reactor[J]. Angewandte Chemie International Edition, 2017, 56(51): 16333-16337. |
41 | COURTNEY M , CHEN X , CHAN S , et al .Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications[J]. Analytical Chemistry, 2016, 89(1): 910-915. |
42 | WANG K , LU Y C , XU J H , et al . Liquid-liquid micro-dispersion in a double-pore T-shaped microfluidic device[J]. Microfluidics and Nanofluidics, 2009, 6(4): 557-564. |
43 | YIN S , YANG S , WANG C , et al .Magnetic-directed assembly from Janus building blocks to multiplex molecular-analogue photonic crystal structures[J]. Journal of the American Chemical Society, 2016, 138(2): 566-573. |
44 | DU G , FANG Q , DEN TOONDER J M J .Microfluidics for cell-based high throughput screening platforms—A review[J]. Analytica Chimica Acta, 2016, 903: 36-50. |
45 | LAN F , DEMAREE B , AHMED N , et al .Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding[J]. Nature Biotechnolog, 2017, 35(7): 640-646. |
46 | CASTRO-HERNANDEZ E , GUNDABALA V , FERNANDEZ-NIEVES A , et al .Scaling the drop size in coflow experiments[J]. New Journal of Physics, 2009, 11(7): 75021. |
47 | CASTRO-HERNANDEZ E , VAN HOEVE W , LOHSE D , et al .Microbubble generation in a co-flow device operated in a new regime[J]. Lab on a Chip, 2011, 11(12): 2023-2029. |
48 | XIA L , CUI Q , SUO X , et al .Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism[J]. Advanced Functional Materials, 2018, 28(13): 1704292. |
49 | LI Y K , WANG K , LUO G S .Microdroplet generation with dilute surfactant concentration in a modified T-junction device[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12131-12138. |
50 | LI Y K , WANG K , XU J H , et al .A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188. |
51 | LI Y K , LIU G T , XU J H , et al .A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364. |
52 | GORDILLO J M , CHENG Z , GANAN-CALVO A M , et al .A new device for the generation of microbubbles[J]. Physics of Fluids, 2004, 16(8): 2828-2834. |
53 | ANNA S L , BONTOUX N , STONE H A .Formation of dispersions using "flow focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366. |
54 | GORDILLO J M , GA ÁN-CALVO A M , PÉREZ-SABORID M .Monodisperse microbubbling: absolute instabilities in coflowing gas-liquid jets[J]. Physics of Fluids, 2001, 13(12): 3839-3842. |
55 | CHONG Z Z , TAN S H , GANAN-CALVO A M , et al .Active droplet generation in microfluidics[J]. Lab on a Chip, 2016, 16(1): 35-58. |
56 | ZHU P , WANG L .Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
57 | 付宇航, 赵述芳, 王文坦, 等 . 多相/多组分LBM模型及其在微流体领域的应用[J]. 化工学报, 2014, 65(7): 2535-2543. |
FU Y H , ZHAO S F , WANG W T , et al . Appliction of lattice Boltzmann method for simalation of Multiphase/Multicomponent flow in microfluidics[J]. CIESC J. 2014, 65(7): 2535-2543. | |
58 | WÖRNER M .Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886. |
59 | GUNSTENSEN A K , ROTHMAN D H , ZALESKI S , et al .Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8): 4320-4327. |
60 | RIAUD A , WANG K , LUO G .A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel[J]. Chemical Engineering Science, 2013, 99: 238-249. |
61 | HIRT C W , NICHOLS B D .Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 1(39): 201-225. |
62 | YANG X , JAMES A J , LOWENGRUB J , et al .An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids[J]. Journal of Computational Physics, 2006, 217(2): 364-394. |
63 | LV X , ZOU Q , ZHAO Y , et al .A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids[J]. Journal of Computational Physics, 2010, 229(7): 2573-2604. |
64 | OSHER S , SETHIAN J A .Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 1(79): 12-49. |
65 | HARTMANN D , MEINKE M , SCHRÖDER W .Differential equation based constrained reinitialization for level set methods[J]. Journal of Computational Physics, 2008, 227(14): 6821-6845. |
66 | HARTMANN D , MEINKE M , SCHRÖDER W .The constrained reinitialization equation for level set methods[J]. Journal of Computational Physics, 2010, 229(5): 1514-1535. |
67 | MIN C .On reinitializing level set functions[J]. Journal of Computational Physics, 2010, 229(8): 2764-2772. |
68 | GHADIALI S N , GAVER D P .The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube[J]. Journal of Fluid Mechanics,2003, 478: 165-196. |
69 | WANG K , LU Y C , XU J H , et al .Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J]. Langmuir, 2009, 25(4): 2153-2158. |
70 | BARET J , KLEINSCHMIDT F , EL HARRAK A , et al .Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis[J]. Langmuir, 2009, 25(11): 6088-6093. |
71 | EGGLETON C D , STEBE K J .An adsorption-desorption-controlled surfactant on a deforming droplet[J]. Journal of Colloid and Interface Science, 1998, 208(1): 68-80. |
72 | FERRI J K , STEBE K J . Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption[J]. Advances in Colloid and Interface Science, 2000, 85(1): 61-97. |
73 | YANG L , LIU G , LUO G S , et al . Investigation of dynamic surface tension in gas-liquid absorption using a microflow interfacial tensiometer[J]. Reaction Chemistry & Engineering, 2017, 2(2): 232-238. |
74 | LAN W , WANG C , GUO X , et al . Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process[J]. AIChE Journal, 2016, 62(7): 2542-2549. |
75 | WANG K , ZHANG L , ZHANG W , et al .Mass-transfer-controlled dynamic interfacial tension in microfluidic emulsification processes[J]. Langmuir, 2016, 32(13): 3174-3185. |
76 | CHANG C , FRANSES E I .Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 1-45. |
77 | VAN DER GRAAF S , SCHROËN C G P H , VAN DER SMAN R G M , et al .Influence of dynamic interfacial tension on droplet formation during membrane emulsification[J]. Journal of Colloid and Interface Science, 2004, 277(2): 456-463. |
78 | XU J H , DONG P F , ZHAO H , et al .The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J]. Langmuir, 2012, 28(25): 9250-9258. |
79 | WANG X , RIAUD A , WANG K , et al .Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(3): 503-512. |
80 | EGGLETON C D , TSAI T M , STEBE K J .Tip streaming from a drop in the presence of surfactants[J]. Physical Review Letters, 2001, 87(4): 48302. |
81 | ANNA S L , MAYER H C .Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
82 | JOSEPHIDES D N , SAJJADI S .Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices[J]. Langmuir, 2015, 31(3): 1218-1224. |
83 | FERNANDEZ J M , HOMSY G M .Chemical reaction-driven tip-streaming phenomena in a pendant drop[J]. Physics of Fluids, 2004, 16(7): 2548-2555. |
84 | WARD T , FAIVRE M , STONE H A .Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction[J]. Langmuir, 2010, 26(12): 9233-9239. |
85 | JEONG W , LIM J , CHOI J , et al .Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices[J]. Lab on a Chip, 2012, 12(8): 1446-1453. |
86 | MOYLE T M , WALKER L M , ANNA S L .Controlling thread formation during tip-streaming through an active feedback control loop[J]. Lab on a Chip, 2013, 13(23): 4534-4541. |
87 | KIM H , MULLER K , SHARDT O , et al .Solutal Marangoni flows of miscible liquids drive transport without surface contamination[J]. Nature Physic, 2017, 13(11): 1105. |
88 | WANG K , XU J , LIU G , et al .Role of interfacial force on multiphase microflow—an important meso-scientific issue[J]. Advances in Chemical Engineering, 2015, 47: 163-191. |
89 | HUAWEI S , YANGCHENG LÜ , KAI W , et al .An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 18-26. |
90 | 张吉松, 刘国涛, 王凯, 等 . 微通道内传递对液液分散过程的影响规律[J]. 化工学报, 2015, 66(8): 2940-2946. |
ZHANG Jisong , LIU Guotao , WANG Kai , et al .Effect of transfer on liquid-liquid dispersion in microchannels[J]. CIESC Journal, 2015, 66(8): 2940-2946. | |
91 | DESHPANDE J B , KULKARNI A A .Effect of interfacial mass transfer on the dispersion in segmented flow in straight capillaries[J]. AIChE Journal, 2015, 61(12): 4294-4308. |
92 | WEGENER M , PASCHEDAG A R .Mass transfer enhancement at deformable droplets due to Marangoni convection[J]. International Journal of Multiphase Flow, 2011, 37(1): 76-83. |
93 | LU P , WANG Z , YANG C , et al .Experimental investigation and numerical simulation of mass transfer during drop formation[J]. Chemical Engineering Science, 2010, 65(20): 5517-5526. |
94 | VLADISAVLJEVIĆ G T , EKANEM E E , ZHANG Z , et al .Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels[J]. Chemical Engineering Journal, 2018, 333: 380-391. |
95 | ARSHADY R .Suspension, emulsion, and dispersion polymerization: a methodological survey[J]. Colloid and Polymer Science. 1992, 270(8): 717-732. |
96 | SAGGESE C , FERRARIO S , CAMACHO J , et al .Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame[J]. Combustion and Flame, 2015, 162(9): 3356-3369. |
97 | HENCH L L , WEST J K .The sol-gel process[J]. Chemical Reviews, 1990, 90(1): 33-72. |
98 | KENDALL K . The impossibility of comminuting small particles by compression[J]. Nature, 1978, 272(5655): 710-711. |
99 | ELBERT D L .Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review[J]. Acta Biomaterialia, 2011, 7(1): 31-56. |
100 | DONG P , XU J , ZHAO H , et al .Preparation of 10μm scale monodispersed particles by jetting flow in coaxial microfluidic devices[J]. Chemical Engineering Journal, 2013, 214: 106-111. |
101 | GUO S , YAO T , JI X , et al .Versatile preparation of nonspherical multiple hydrogel core PAM PEG emulsions and hierarchical hydrogel microarchitectures[J]. Angewandte Chemie International Edition, 2014, 53(29): 7504-7509. |
102 | LIU H , QIAN X , WU Z , et al .Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay[J]. Journal of Materials Chemistry B, 2016, 3(4): 482-488. |
103 | KIM J , UTADA A S , FERNÁNDEZ-NIEVES A , et al .Fabrication of monodisperse gel shells and functional microgels in microfluidic devices[J]. Angewandte Chemie International Edition, 2007, 46(11): 1819-1822. |
104 | CHAU M , ABOLHASANI M , THÉRIEN-AUBIN H , et al .Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties[J]. Biomacromolecules, 2014, 15(7): 2419-2425. |
105 | TAN W H , TAKEUCHI S .Monodisperse alginate hydrogel microbeads for cell encapsulation[J]. Advanced Materials, 2007, 19(18): 2696-2701. |
106 | HUNG L , TEH S , JESTER J , et al .PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches[J]. Lab on a Chip, 2010, 10(14): 1820-1825. |
107 | WATANABE T , ONO T , KIMURA Y .Continuous fabrication of monodisperse polylactide microspheres by droplet-to-particle technology using microfluidic emulsification and emulsion-solvent diffusion[J]. Soft Matter, 2011, 7(21): 9894-9897. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[3] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[4] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[5] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[6] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[7] | ZHANG Dashan, CHEN Huixian, MAO Linqiang, ZHANG Wenyi. Refining sludge treatment with alkaline inorganic salt and surfactant [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 468-475. |
[8] | WANG Yixing, YANG Jingyi, HU Chunfu, XU Xinru. Synthesis and performance of YM series demulsifiers in high-efficiency separation of SAGD heavy oil production liquid [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 382-390. |
[9] | XU Bo, JIANG Guobin, YU Jinlei, HU Jinyan, ZHAO Liang, XU Bingke. Impact of different surfactants on characteristics of single-phase microemulsions [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 350-356. |
[10] | HUANG Hongling, YU Chang, QIU Jieshan. Electrochemical energy conversion and storage based on chemical engineering [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4696-4702. |
[11] | WANG Bingjie, LI Hui, YANG Xiaoyong, BAI Zhishan. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. |
[12] | Mingbao LIU, Wanzhong GUO, Wanzhong YIN. Flotation mechanism of rutile in synergistic systems composed by sodium oleate and hydroxylamine-type reagents [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3362-3370. |
[13] | Zhuo CHEN, Yundong WANG, Jianhong XU. Enrichment of rare earth elements by gas-liquid-liquid microdispersion extraction technology [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4963-4969. |
[14] | Wei WANG,Jian PENG,Shuo LIN,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Fabrication of smart microfluidic chip and its Pb2+-detection performance [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 42-48. |
[15] | Xiaoheng HE,Liangyin CHU. Recent progress of fabrication of functional non-spherical microparticles from microfluidic templates [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4109-4118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |