Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (12): 4887-4896.DOI: 10.16085/j.issn.1000-6613.2017-2486
Previous Articles Next Articles
LI Xinyi, PAN Danping, HU Bin, CHENG Teng, YANG Linjun
Received:
2017-12-01
Revised:
2017-01-18
Online:
2018-12-05
Published:
2018-12-05
李欣怡, 潘丹萍, 胡斌, 程滕, 杨林军
通讯作者:
杨林军,教授,博士生导师,研究方向为PM2.5排放控制、CO2捕集与封存、传质与分离。
作者简介:
李欣怡(1993-),女,硕士研究生,研究方向为SO3酸雾监测及其迁移转化控制。E-mail:lxy_seu@163.com。
基金资助:
CLC Number:
LI Xinyi, PAN Danping, HU Bin, CHENG Teng, YANG Linjun. Research status and prospects of migration, transformation and control of SO3 from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4887-4896.
李欣怡, 潘丹萍, 胡斌, 程滕, 杨林军. 燃煤烟气中SO3迁移转化特性及其控制的研究现状及展望[J]. 化工进展, 2018, 37(12): 4887-4896.
[1] MORETTI A L, TRISCORI R J, RITZENTHALER D P.A system approach to SO3 mitigation[C]//Combined Power Plant Air Pollutant Control Mega Symposium, Baltimore, Maryland. USA. 2006. [2] WALSH P M, MCCAIN J D, CUSHING K M.Evaluation and mitigation of visible acidic aerosol plumes from coal fired power boilers[R]. EPA contract No.EP-C-04-056. Washington:US Environmental Protection Agency. 2006. [3] 马双忱, 苏敏, 孙云雪, 等. O3氧化模拟烟气脱硫脱硝的实验研究[J]. 中国电机工程学报, 2010, 30(s1):81-84. MA Shuangchen, SU Min, SUN Yunxue, et al. Experimental studies on removal SO2 and NOx from simulating flue gas with O3 oxidation[J]. Proceedings of the CSEE, 2010, 30(s1):81-84. [4] SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6):750. [5] 杨彦. 火力发电厂湿法烟气脱硫系统烟囱腐蚀与防腐研究[D]. 北京:北京交通大学, 2010. YANG Yan. Corrosive and anticorrosive research on reinforce concrete chimney after wet flue gas desulfurization in power plant[D]. Beijing:Beijing Jiaotong University, 2010. [6] 胡冬, 王海刚, 郭婷婷, 等. 燃煤电厂烟气SO3控制技术的研究及进展[J]. 科学技术与工程, 2015, 15(35):92-99. HU Dong, WANG Haigang, GUO Tingting, et al. Research and progress of the control technology of flue gas from coal-fired power plants[J]. Science Technology and Engineering, 2015, 15(35):92-99 [7] 王宏亮, 薛建明, 许月阳, 等. 燃煤电站锅炉烟气中SO3的生成及控制[J]. 电力科技与环保, 2014, 30(5):17-20. WANG Hongliang, XUE Jianming, XU Yueyang, et al. Formation and control of SO3 from coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2014, 30(5):17-20. [8] 陈焱, 许月阳, 薛建明. 燃煤烟气中SO3成因、影响及其减排对策[J]. 电力科技与环保, 2011, 27(3):35-37. CHEN Yan, XU Yueyang, XUE Jianming. Discussion on flue gas SO3 forming mechanism, impact and its counter measures[J]. Electric Power Technology and Environmental Protection, 2011, 27(3):35-37. [9] 西安热工研究院. 火电厂SCR烟气脱硝技术[M]. 北京:中国电力出版社, 2013. Xi'an Thermal Power Research Institute Co., Ltd. Fire power plant SCR flue gas denitration technology[M]. Beijing:China Electric Power Press, 2013. [10] 顾卫荣, 周明吉, 马薇, 等. 选择性催化还原脱硝催化剂的研究进展[J]. 化工进展, 2012, 31(7):1493-1500. GU Weirong, ZHOU Mingji, MA Wei, et al. Research progress on selective catalytic reduction De-NOx catalysts[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1493-1500. [11] 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8):12-17. MA Shuangchen, JIN Xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate SCR flue gas denitrification progress and control thereof[J]. Thermal Power Generation, 2010, 39(8):12-17. [12] SVACHULA J, ALEMANY L J, FERLAZZO N, et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(5):826-834. [13] SCHWÃMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 222(8):274-281. [14] 束航. SCR烟气脱硝过程中硫酸(氢)铵细颗粒生成及分解特性研究[D]. 南京:东南大学, 2015. SU Hang. Investigation on the formation and decomposition mechanism of ammonium sulfate and ammonium bisulfate fine particles during SCR process of coal-dired flue gas[D]. Nanjing:Southeast University, 2015. [15] 姜烨, 高翔, 吴卫红, 等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报, 2013, 33(14):18-31. JIANG Ye, GAO Xiang, WU Weihong, et al. Review of the deactivation of selective catalytic reduction DeNOx catalysts[J]. Proceedings of the CSEE, 2013, 33(14):18-31. [16] LI Z, JIANG J, MA Z, et al. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China[J]. Atmospheric Environment, 2015, 120:227-233. [17] 张玉华, 束航, 范红梅, 等. 商业V2O5-WO3/TiO2催化剂SCR脱硝过程中PM2.5的排放特性及影响因素研究[J]. 中国电机工程学报, 2015, 35(2):383-389. ZHANG Yuhua, SHU Hang, FAN Hongmei, et al. Research on emission characteristics and influencing factors of PM2.5 for selective catalytic reduction based on V2O5-WO3/TiO2 commercial catalysts[J]. Proceedings of the CSEE, 2015, 35(2):383-389. [18] 崔占忠, 龙辉, 龙正伟, 等. 低低温高效烟气处理技术特点及其在中国的应用前景[J]. 动力工程学报, 2012, 32(2):152-158. CUI Zhanzhong, LONG Hui, LONG Zhengwei, et al. Technical features of lower temperature high efficiency flue gas treatment system and its application prospects in China[J]. Journal of Chinese Society of Power Engineering, 2012, 32(2):152-158. [19] 郦建国, 吴泉明, 余顺利, 等. 燃煤电站电除尘器提效改造技术路线的选择[J]. 中国环保产业, 2013(3):58-62. LI Jianguo, WU Quanming, YU Shunli, et al. The selection of technology route of electric dust catcher in coal-fired power station[J]. China Environmental Protection Industry, 2013(3):58-62. [20] 赵海宝, 郦建国, 何毓忠, 等. 低低温电除尘关键技术研究与应用[J]. 中国电力, 2014, 47(10):117-121. ZHAO Haibao, LI Jianguo, HE Yuzhong, et al. Research and application of key technology of low temperature electric dust removal[J]. Electric Power, 2014, 47(10):117-121. [21] 林翔. 低低温电除尘器提效及多污染物协同治理探讨[J]. 机电技术, 2014(3):10-13. LIN Xiang. Discussion on the effective and multi-pollutant collaborative management of low-temperature electrostatic precipitator[J]. Mechanical & Electrical Technology, 2014(3):10-13. [22] 胡斌, 刘勇, 任飞, 等. 低低温电除尘协同脱除细颗粒与SO3实验研究[J]. 中国电机工程学报, 2016, 36(16):4319-4325. HU Bin, LIU Yong, REN Fei, et al. Experimental study on simultaneous control of fine particle and SO3 by Low-low temperature electrostatic precipitator[J]. Proceedings of the CSEE, 2016, 36(16):4319-4325. [23] 张绪辉. 低低温电除尘器对细颗粒物及三氧化硫的协同脱除研究[D]. 北京:清华大学, 2015. ZHANG Xuhui. Studies on synergetic removal of fine particulates and SO3 by an extra cold-side electrostatic precipitator[D]. Beijing:Tsinghua University, 2015. [24] SINANIS S, WIX A, ANA L, et al. Characterization of sulphuric acid and ammonium sulphate aerosols in wet flue gas cleaning processes[J]. Chemical Engineering & Processing Process Intensification, 2008, 47(1):22-30. [25] WIX A, BRACHERT L, SINANIS S, et al. A simulation tool for aerosol formation during sulphuric acid absorption in a gas cleaning process[J]. Journal of Aerosol Science, 2010, 41(12):1066-1079. [26] BRACHERT L, KOCHENBURGER T, SCHABER K. Facing the sulfuric acid aerosol problem in flue gas cleaning:pilot plant experiments and simulation[J]. Aerosol Science and Technology, 2013, 47(10):1083-1091.. [27] BRACHERT L, MERTENS J, KHAKHARIA P, et al. The challenge of measuring sulfuric acid aerosols:number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)[J]. Journal of Aerosol Science, 2014, 67(1):21-27. [28] MERTENS J, BRACHERT L, DESAGHER D, et al. ELPI+ measurements of aerosol growth in an amine absorption column[J]. International Journal of Greenhouse Gas Control, 2014, 23:44-50. [29] 兰新生, 苏长华, 周易谦. 石灰石/石膏湿法脱硫系统净烟气中SO3(硫酸雾)来源的讨论[J]. 电力科技与环保, 2006, 22(6):34-36. LAN Xinsheng, SU Changhua, ZHOU Yiqian. Discussion on the source of suifur trioxide(sulfuric acid mist)in flue gas streams after WFGD system[J]. Electric Power Technology and Environmental Protection, 2006, 22(6):34-36. [30] PAN D P, YANG L J, WU H, et al. Removal characteristics of sulfuric acid aerosols from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2017, 67(3):352-357. [31] PAN D P, YANG J, WU H, et al. Formation and removal characteristics of sulfuric acid mist in a wet flue gas desulfurization system[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3):598-604. [32] MERTENS J, BRUNS R, SCHALLERT B, et al. Effect of a gas-gas-heater on H2SO4 aerosol formation:implications for mist formation in amine based carbon capture[J]. International Journal of Greenhouse Gas Control, 2015, 39:470-477. [33] 潘丹萍, 吴昊, 杨林军, 等. 电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J]. 中国电机工程学报, 2016, 36(16):4356-4362. PAN Danping, WU Hao, YANG Linjun, et al. Removal effect of wet flue gas desulfurization system on fine particles and SO3 acid mist from coal-fired power plants[J]. Proceedings of the CSEE, 2016, 36(16):4356-4362. [34] CHANG J, DONG Y, WANG Z, et al. Removal of sulfuric acid aerosol in a wet electrostatic precipitator with single terylene or polypropylene collection electrodes[J]. Journal of Aerosol Science, 2011, 42(8):544-554. [35] JORDAN S, PAUR H R, CHERDRON W, et al. Physical and chemical properties of the aerosol produced by the electron beam dry scrubbing of flue gas (ES-Verfahren)[J]. Journal of Aerosol Science, 1986, 17(4):669-675. [36] ANDERLOHR C, BRACHERT L, MERTENS J, et al. Collection and generation of sulfuric acid aerosols in a wet electrostatic precipitator[J]. Aerosol Science & Technology, 2015, 49(3):144-151. [37] HUANG J, ZHANG F, SHI Y, et al. Investigation of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist from a simulated WFGD system[J]. Journal of Aerosol Science, 2016, 100:38-52. [38] MERTENS J, ANDERLOHR C, ROGIERS P, et al. A wet electrostatic precipitator (WESP) as countermeasure to mist formation in amine based carbon capture[J]. International Journal of Greenhouse Gas Control, 2014, 31(31):175-181. [39] 雒飞, 胡斌, 吴昊, 等. 湿式电除尘对PM2.5/SO3酸雾脱除特性的试验研究[J]. 东南大学学报(自然科学版), 2017(1):91-97. LUO Fei, HU Bin, WU Hao, et al. Experimental study on removal properties of PM2.5 and sulfuric acid mist by wet electrostatic precipitator[J]. Journal of Southeast University (Natural Science Edition), 2017(1):91-97. [40] 纪培栋. SCR催化剂SO2氧化机理及调控机制[D]. 杭州:浙江大学, 2016. JI Peidong. Research of SO2 oxidation over SCR caralyst and regulatory mechanism[D]. Hangzhou:Zhejiang University, 2016. [41] 刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中SO3生成、治理及测试技术研究[J]. 中国电力, 2015, 48(9):152-156. LIU Hanxiao, YAO Yuping, LI Jianguo, et al. Study on the generation, management and test of SO3 in flue gas of coal-fired power plants[J]. Electric Power, 2015, 48(9):152-156. [42] 王智, 贾莹光, 祁宁. 燃煤电站锅炉及SCR脱硝中SO3的生成及危害[J]. 东北电力技术, 2005, 26(9):1-3. WANG Zhi, JIA Yingguang, QI Ning. The creation and harm of SO3 for coal-fired boiler and SCR denitration[J]. Northeast Electric Power Technology, 2005, 26(9):1-3. [43] UEDA Y, HAMAGUCHI R, MATSUURA K, et al. SO3 removal system for flue gas in plants firing high-sulfur residual fuels[J]. Mitsubishi Heavy Industries Technical Review, 2012, 49(4):6-12. [44] KONG Y, WOOD M D. Dry injection of trona for SO3 control[J]. Power, 2010, 154(5):114. [45] 高智溥, 胡冬, 张志刚, 等. 碱性吸附剂脱除SO3技术在大型燃煤机组中的应用[J]. 中国电力, 2017, 50(7):102-108. GAO Zhibo, HU Dong, ZHANG Zhigang, et al. Application of alkaline adsorbent removal SO3 technology in large coal-fired units[J]. Electric Power, 2017, 50(7):102-108. [46] GRAY S, MILLER S, MESEROLE F, et al. "In-situ" SBS iniection technology for SO3 control:Summary of operating performance and economics[C]//Air Quality Ⅴ Conference. Arlington, USA, 2005. [47] MA S C, CHAI J, CHEN G D. Research on desulfurization wastewater evaporation:present and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2016, 58:1143-1151. |
[1] | WANG Min, MAO Yuhong, CHEN Chao, BAI Dan. Progress on the toxicity, morphology and control of aluminum salt hydrolysates in water treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 479-488. |
[2] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[3] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[4] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[5] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[6] | DING Wenjin, LIU Zhuoqi, LU Haichen, SUN Hongjuan, PENG Tongjiang. Preparation of high-purity CaCO3 from phosphogypsum for CO2 mineralization in CH3COONa-NH4OH-H2O system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3824-3833. |
[7] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[8] | LIU Weixiao, LIU Yang, GAO Fulei, WANG Wei, WANG Yinglei. Application of microreactor in synthesis and quality improvement of energetic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. |
[9] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
[10] | WANG Zijie, LU Shuyin, ZHAO Ziliang, WANG Ning, GU Yujiong. Analysis of the influence of heating transformation on the performance of thermal power unit [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2325-2331. |
[11] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[12] | ZHANG Zhicheng, HAN Daliang, FAN Dinghui, TAO Ying, WENG Zhe, YANG Quanhong. Recent advances in crystal plane regulation of zinc metal anodes for intrinsically safe aqueous zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2504-2515. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[15] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 607
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 325
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |