Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (12): 4853-4861.DOI: 10.16085/j.issn.1000-6613.2018-0599
Previous Articles Next Articles
ZHANG Wenzhe1,2, CHEN Jing3, LIU Yu1,2, XIAO Benyi1,2
Received:
2018-03-26
Revised:
2018-05-07
Online:
2018-12-05
Published:
2018-12-05
张文哲1,2, 陈静3, 刘玉1,2, 肖本益1,2
通讯作者:
肖本益,副研究员,硕士生导师,研究方向为污泥生物处理与资源化。
作者简介:
张文哲(1995-),女,硕士研究生,研究方向为污泥生物处理与资源化。
基金资助:
CLC Number:
ZHANG Wenzhe, CHEN Jing, LIU Yu, XIAO Benyi. Comparison of mesophilic and thermophilic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4853-4861.
张文哲, 陈静, 刘玉, 肖本益. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853-4861.
[1] MAGRÍ A, GIOVANNINI F, CONNAN R, et al. Nutrient management from biogas digester effluents:a bibliometric-based analysis of publications and patents[J]. International Journal of Environmental Science and Technology, 2017, 14(8):1739-1756. [2] KARDOS L, JUHÁSZ Á, PALKÓ G, et al. Comparing of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biochemical tests[J]. Applied Ecology & Environmental Resesarch, 2011, 9(3):293-302. [3] BAYR S, RANTANEN M, KAPARAJU P, et al. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes[J]. Bioresource Technology, 2012, 104(1):28-36. [4] 杨樱, 葛晶晶, 刘凯荣. 中国沼气工程技术研究[J]. 现代农业科学, 2009(3):217-219. YANG Y, GE J J, LIU K R. Study on biogas engineering technology in China[J]. Modern Agricultural Sciences, 2009(3):217-219. [5] NGUYEN D D, CHANG S W, CHA J H, et al. Dry semi-continuous anaerobic digestion of food waste in the mesophilic and thermophilic modes:new aspects of sustainable management and energy recovery in South Korea[J]. Energy Conversion & Management, 2017, 135:445-452. [6] NGES I A, JING L. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions[J]. Renewable Energy, 2010, 35(10):2200-2206. [7] MOSET V, POULSEN M, WAHID R, et al. Mesophilic versus thermophilic anaerobic digestion of cattle manure:methane productivity and microbial ecology[J]. Microbial Biotechnology, 2015, 8(5):787. [8] ALMEIDA S D. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness[J]. Bioresource Technology, 2017, 241:985. [9] IRANPOUR R, OH S, COX H H, et al. Changing mesophilic wastewater sludge digestion into thermophilic operation at Terminal Island Treatment Plant[J]. Water Environment Research, 2002, 74(5):494-507. [10] BOUALLAGUI H, RACHDI B, GANNOUN H, et al. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors[J]. Biodegradation, 2009, 20(3):401. [11] GE H, JENSEN P D, BATSTONE D J. Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions[J]. Water Science & Technology A:Journal of the International Association on Water Pollution Research, 2011, 64(4):848-853. [12] VRIEZE J D, SMET D, KLOK J, et al. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants[J]. Bioresource Technology, 2016, 218:1237-1245. [13] ZHEN G, LU X, LI Y Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion[J]. Applied Energy, 2014, 128(3):93-102. [14] DE VRIEZE J, DE LATHOUWER L, VERSTRAETE W, et al. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste[J]. Water Research, 2013, 47(11):3732. [15] MOTTET A, FRANÇOIS E, LATRILLE E, et al. Estimating anaerobic biodegradability indicators for waste activated sludge[J]. Chemical Engineering Journal, 2010, 160(2):488-496. [16] 李国德, 李娜. 污水处理厂剩余污泥中高温厌氧消化对比试验[J]. 辽宁工程技术大学学报, 2011, 30(3):412-415. LI G D, LI N. Contrast experimental studies on mesophilic and thermophilic anaerobic digestion of residual activated sludge from municipal wastewater treatment plant[J]. Journal of Liaoning Technical University, 2011, 30(3):412-415. [17] MACKIE R I, BRYANT M P. Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures[J]. Applied Microbiology & Biotechnology, 1995, 43(2):346-350. [18] NIU Q, TAKEMURA Y, KUBOTA K, et al. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure:microbial community dynamics and process resilience[J]. Waste Management, 2015, 43:114-122. [19] SUHARTINI S, HEAVEN S, BANKS C J. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp:performance, dewaterability and foam control[J]. Bioresource Technology, 2014, 152(1):202-211. [20] JEONG J Y, SON S M, PYON J H, et al. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent[J]. Bioresource Technology, 2014, 165(8):122. [21] KIM M, AHN Y H, SPEECE R E. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic[J]. Water Research, 2002, 36(17):4369. [22] KABOURIS J C, TEZEL U, PAVLOSTATHIS S G, et al. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease[J]. Water Environment Research a:Research Publication of the Water Environment Federation, 2009, 81(5):476-485. [23] CAVINATO C, BOLZONELLA D, PAVAN P, et al. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot-and full-scale reactors[J]. Renewable Energy, 2013, 55(4):260-265. [24] CHAE K J, AM J, YIM S K, et al. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure[J]. Bioresource Technology, 2008, 99(1):1. [25] LABATUT R A, ANGENENT L T, SCOTT N R. Conventional mesophilic vs. thermophilic anaerobic digestion:a trade-off between performance and stability[J]. Water Research, 2014, 53(8):249. [26] 郭香麟, 左剑恶, 史绪川, 等. 餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J]. 环境科学, 2017, 38(7):3070-3077. GUO X L, ZUO J E, SHI X C, et al. Mesophilic and thermophilic anaerobic co-digestion of food waste and straw[J]. Environmental Science, 2017, 38(7):3070-3077. [27] KIM M S, KIM D H, YUN Y M. Effect of operation temperature on anaerobic digestion of food waste:performance and microbial analysis[J]. Fuel, 2017,209:598-605. [28] FOUNTOULAKIS M S, DRAKOPOULOU S, TERZAKIS S, et al. Potential for methane production from typical Mediterranean agro-industrial by-products[J]. Biomass & Bioenergy, 2008, 32(2):155-161. [29] AMANI T, NOSRATI M, SREEKRISHNAN T R. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects——a review[J]. Environmental Reviews, 2010, 18(1):255-278. [30] RIGGIO S, HERNANDÉZSHEK M A, TORRIJOS M, et al. Comparison of the mesophilic and thermophilic anaerobic digestion of spent cow bedding in leach-bed reactors[J]. Bioresource Technology, 2017, 234:466. [31] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process:a review[J]. Bioresource Technology, 2008, 99(10):4044-4064. [32] HIDAKA T, WANG F, TOGARI T, et al. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge[J]. Bioresource Technology, 2013, 149(12):177-183. [33] GARCIA M L, ANGENENT L T. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment[J]. Water Research, 2009, 43(9):2373-2382. [34] MA D L R, RIAU V, RAPOSO F, et al. Thermophilic anaerobic digestion of sewage sludge:focus on the influence of the start-up. A review[J]. Critical Reviews in Biotechnology, 2013, 33(4):448. [35] MICOLUCCI F, GOTTARDO M, CAVINATO C, et al. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery[J]. Waste Management, 2015, 48:227-235. [36] BÖSKE J, WIRTH B, GARLIPP F, et al. Upflow anaerobic solid-state (UASS) digestion of horse manure:thermophilic vs. mesophilic performance[J]. Bioresource Technology, 2015, 175:8. [37] KIM J K, OH B R, CHUN Y N, et al. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste[J]. Journal of Bioscience & Bioengineering, 2006, 102(4):328-332. [38] VINDIS P, MURSEC B, JANZEKOVIC M, et al. The impact of mesophilic and thermophilic anaerobic digestion on biogas production[J]. Journal of Achievements in Materials & Manufacturing Engineering, 2009, 36(2):192-198. [39] WANG P, WANG H T, QIU Y Q, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production——a review[J]. Bioresource Technology, 2018, 248:29-36. [40] LIU J B, NI X T, WEI Y S, et al. Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes[J]. Environmental Science, 2014, 35(9):3455. [41] BRAGUGLIA C M, GIANICO A, MININNI G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion[J]. Journal of Environmental Management, 2012, 95:S139-S143. [42] WATANABE H, KITAMURA T, OCHI S, et al. Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions[J]. Water Science & Technology, 1997, 36:25-32. [43] ZIEMBA C, PECCIA J. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge[J]. Water Research, 2011, 45(16):4758. [44] ELMITWALLI T A, SOELLNER J, DE KEIZER A, et al. Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage[J]. Water Research, 2001, 35(5):1311. [45] BOE K, KOUGIAS P G, PACHECO F, et al. Effect of substrates and intermediate compounds on foaming in manure digestion systems[J]. Water Science & Technology A:Journal of the International Association on Water Pollution Research, 2012, 66(10):2146. [46] KIM H W, NAM J Y, KANG S T, et al. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes[J]. Bioresource Technology, 2012, 110(4):130-134. [47] FERNÁNDEZ-RODRÍGUEZ J, PÉREZ M, ROMERO L I. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW:kinetic analysis[J]. Chemical Engineering Journal, 2013, 232:59-64. [48] GUO X, CHENG W, SUN F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresource Technology, 2014, 152:420. [49] WITTEBOLLE L, MARZORATI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009,458(7238):623. [50] GAVALA H N, YENAL U, SKIADAS I V, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature[J]. Water Research, 2003, 37(19):4561-4572. [51] KALAT D G, YÜCEER A. Anaerobic mesophilic and thermophilic treatability of vegetable oil refining wastewater[J]. Process Safety & Environmental Protection, 2017, 109:151-157. [52] LI Q, QIAO W, WANG X, et al. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge[J]. Waste Management, 2015, 36:77-85. [53] ZUPANCIC G D, ROŠ M. Heat and energy requirements in thermophilic anaerobic sludge digestion[J]. Renewable Energy, 2003, 28(14):2255-2267. [54] 汪春霞. 有机固体废弃物厌氧消化与综合利用[J]. 中国资源综合利用, 2006, 24(7):25-28. WANG C X. Organic waste anaerobic digestion and its technology of comprehensive utilization[J]. China Resources Comprehensive Utilization, 2006, 24(7):25-28. [55] DE BAERE L, MATTHEEUWS B. State-of-the-art 2008——anaerobic digestion of solid waste[J]. Waste Management World, 2008, 9(5):1-8. [56] 党锋, 毕于运, 刘研萍, 等. 欧洲大中型沼气工程现状分析及对我国的启示[J]. 中国沼气, 2014, 32(1):79-83. DANG F, BI Y Y, LIU Y P, et al. Analysis of the large-and-medium-sized biogas projects in europe and comparisons with our country[J]. China Biogas, 2014, 32(1):79-83. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[6] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[7] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[8] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[9] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[10] | GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. |
[11] | SHANG Xiaobiao, LI Guangchao, XIAO Liping, BAI Yongzhen, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. |
[12] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[13] | HUANG Baiqi, LI Shuangxi, YAN Xinxin, GU Yanfei, LIU Xinghua, SONG Zifeng. Performance analysis of stator secondary O-ring seal and compensation for micro-motion of high-speed dynamic pressure mechanical seal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1206-1216. |
[14] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[15] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |