[1] BINDLISH R. Nonlinear model predictive control of an industrial polymerization process[J]. Computers & Chemical Engineering, 2015, 73:43-48.
[2] LUCIA S, FINKLER T, ENGELL S. Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty[J]. Journal of Process Control, 2013, 23(9):1306-1319.
[3] SMITH D,GLEN K,THOMAS R. Automated image analysis with the potential for process quality control applications in stem cell maintenance and differentiation[J]. Biotechnology Progress, 2015, 32(1):215-223.
[4] HOSEN M A, KHOSRAVI A, NAHAVANDI S, et al. Prediction interval-based neural network modelling of polystyrene polymerization reactor——a new perspective of data-based modelling[J]. Chemical Engineering Research & Design, 2014, 92(11):2041-2051.
[5] LUO L, ZHANG N, XIA Z, et al. Dynamics and stability analysis of gas-phase bulk polymerization of propylene[J]. Chemical Engineering Science, 2016, 143:12-22.
[6] NELE M, PINTO J C. Dynamic behavior of a continuous autothermal isobutylene polymerization reactor[J]. Journal of Applied Polymer Science, 2015, 65(7):1403-1413.
[7] ZHOU L, CHEN J, SONG Z, et al. Probabilistic latent variable regression model for process-quality monitoring[J]. Chemical Engineering Science, 2014, 116:296-305.
[8] YIN J, ZHAN X, ZHENG Y, et al. Impact of quality control of satellite soil moisture data on their assimilation into land surface model[J]. Geophysical Research Letters, 2015, 41(20):7159-7166.
[9] HOSEN M A, HUSSAIN M A, MJALLI F S, et al. Performance analysis of three advanced controllers for polymerization batch reactor:an experimental investigation[J]. Chemical Engineering Research & Design, 2014, 92(5):903-916.
[10] JIANG B, WENG Y, ZHANG S, et al. Kinetics and mechanism of ethylene polymerization with TiCl4/MgCl2, model catalysts:effects of titanium content[J]. Journal of Catalysis, 2018, 360:57-65.
[11] 苏鑫, 吴迎亚, 裴华健, 等. 大数据技术在过程工业中的应用研究进展[J]. 化工进展, 2016, 35(6):1652-1659. SU X, WU Y Y, PEI H J, et al. Development in the application of big data technology in process industry.[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1652-1659.
[12] WANG Z, LIU D. Stability analysis for a class of systems:from model-based methods to data-driven methods[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6463-6471.
[13] ROUBINET D, TARTAKOVSKY D M. Hybrid modeling of heterogeneous geochemical reactions in fractured porous media[J]. Water Resources Research, 2013, 49(12):7945-7956.
[14] NASCIMENTO C, GIUDICI R, SCHERBAKOFF N. Modeling of industrial nylon-6,6 polymerization process in a twin-screw extruder reactor. Ⅱ. Neural networks and hybrid models[J]. Journal of Applied Polymer Science, 2015, 72(7):905-912.
[15] WILLIAMS B J, COLE B. Mining monitored data for decision-making with a Bayesian network model[J]. Ecological Modelling, 2013, 249:26-36.
[16] KAYABOL K, KUTLUK S. Bayesian classification of hyperspectral images using spatially-varying Gaussian mixture model[J]. Digital Signal Processing, 2016, 59:106-114.
[17] WANG X Z, HE Y L, WANG D D. Non-naive Bayesian classifiers for classification problems with continuous attributes[J]. IEEE Transactions on Cybernetics, 2013, 44(1):21-39.
[18] SANTOS F L C D, PACI M, NANNI L, et al. Computer vision for virus image classification[J]. Biosystems Engineering, 2015, 138:11-22.
[19] PROCHAZKA A, VYSATA O, VALIS M, et al. Bayesian classification and analysis of gait disorders using image and depth sensors of microsoft kinect[J]. Digital Signal Processing, 2015, 47:169-177.
[20] PAGE G, BHATTACHARYA A, DUNSON D. Classification via Bayesian nonparametric learning of affine subspaces[J]. Journal of the American Statistical Association, 2013, 108(501):187-201.
[21] JIANG Q, WANG B, YAN X. Multi-block independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2497-2508.
[22] JIANG Q, YAN X, HUANG B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2015, 63(1):377-386.
[23] TONG C, SONG Y, YAN X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Industrial & Engineering Chemistry Research, 2013, 52(29):9897-9907.
[24] CHENG Z, LIU X. Optimal online soft sensor for product quality monitoring in propylene polymerization process[J]. Neurocomputing, 2015, 149(3):1216-1224.
[25] 朱鹏飞, 夏陆岳, 潘海天, 基于软测量技术的间歇聚合过程质量控制[J]. 计算机与应用化学, 2015, 32(8):959-963. ZHU P F, XIA L Y, PAN H T. Quality control for batch polymerization process based on soft sensor technology[J]. Computers and Applied Chemistry, 2015, 32(8):959-963.
[26] JIANG B, ZHU X, HUANG D, et al. A combined canonical variate analysis and Fisher discriminant analysis (CVA-FDA) approach for fault diagnosis[J]. Computers & Chemical Engineering, 2015, 77:1-9.
[27] CHENG J, GREINER R. Comparing Bayesian network classifiers[J]. IEEE Transactions on Vehicular Technology, 2013, 63(5):2002-2012.
[28] LIU Z J, GUO S L, LI T Y, et al. Comparative study of Bayesian probabilistic flood forecasting models[J]. Journal of Hydraulic Engineering, 2014, 45(9):1019-1028.
[29] OHSHIMA M, TANIGAKI M. Quality control of polymer production processes[J]. Journal of Process Control, 2000, 10(2):135-148.
[30] COBLE J B, FRAGA C G. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery[J]. Journal of Chromatography A, 2014, 1358:155-164. |