[1] 张衍林. 有机废弃物厌氧消化处理技术进展[C]//首届全国有机废弃物生物转化机制及资源化利用研讨会, 2013. ZHANG Y L. Advances in anaerobic digestion of organic waste[C]//National Symposium on Biotransformation Mechanism and Utilization Of Organic Waste, 2013.
[2] 涂睿, 黎军, 王萌, 等. 利用外源氢气纯化升级沼气的研究进展[J]. 化工学报, 2014, 65(5):1587-1593. TU R, LI J, WANG M, et al. Research progress of biogas upgrading with external resource of hydrogen gas[J]. CIESC Journal, 2014, 65(5):1587-1593.
[3] 周宗茂,谢丽,罗刚,等. 厌氧发酵沼气提纯技术研究进展[J]. 环境工程, 2013, 31(3):46-50. ZHOU Z M, XIE L, LUO G, et al. A review on biogas upgrading technology for CO2 removal[J]. Environmental Engineering, 2013, 31(3):46-50.
[4] GHOSH S, KLASS D L. Two-phase anaerobic digestion:US4022665[P]. Institue of Gas Technology, 1977-05-10.
[5] STREVETT K A, VIETH R F, GRASSO D. Chemo-autotrophic biogas purification for methane enrichment:mechanism and kinetics[J]. Chemical Engineering Journal & the Biochemical Engineering Journal, 1995, 58:71-79.
[6] SUN Q, LI H, YAN J, et al. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation[J]. Renewable & Sustainable Energy Reviews, 2015, 51:521-532.
[7] ZHEN G, LU X, LI Y Y, et al. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge[J]. Chemical Engineering Journal, 2014, 263:461-470.
[8] MUñOZ R, MEIER L, DIAZ I, et al. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4):727-759.
[9] LUO G, ANGELIDAKI I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic Methanogenic culture[J]. Biotechnol. Bioeng., 2012, 109(11):2729-2736.
[10] LUO G, JOHANSSON S, BOE K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnol. Bioeng., 2012, 109(4):1088-1094.
[11] LUO G, ANGELIDAKI I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2:process performance and microbial insights[J]. Applied Microbiology and Biotechnology, 2013, 97(3):1373-1381.
[12] RITTMANN S, SEIFERT A, HERWIG C. Quantitative analysis of media dilution rate effects on Methanothermobacter Marburgensis grown in continuous culture on H2 and CO2[J]. Biomass & Bioenergy, 2012, 36:293-301.
[13] GANG L, ANGELIDAKI I. Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor[J]. Applied Microbiology and Biotechnology, 2013, 97(8):3739-3744.
[14] BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environ. Sci. Technol., 2015, 49(20):12585-12593.
[15] DIAZ I, PEREZ C, ALFARO N, et al. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes[J]. Bioresour. Technol., 2015, 185:246-253.
[16] BASSANI I, KOUGIAS P G, ANGELIDAKI I. In-situ biogas upgrading in thermophilic granular UASB reactor:key factors affecting the hydrogen mass transfer rate[J]. Bioresour. Technol., 2016, 221:485-491.
[17] KOUGIAS P G, TREU L, BENAVENTE D P, et al. Ex-situ biogas upgrading and enhancement in different reactor systems[J]. Bioresour. Technol., 2017, 225:429-437.
[18] TREU L, KOUGIAS P G, CAMPANARO S, et al. Deeper insight into the structure of the anaerobic digestion microbial community:the biogas microbiome database is expanded with 157 new genomes[J]. Bioresource Technology, 2016, 216:260.
[19] WANG W, XIE L, LUO G, et al. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading[J]. Bioresour. Technol., 2013, 146:234-239.
[20] RITTMANN S, SEIFERT A, HERWIG C. Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2[J]. Critical Reviews in Biotechnology, 2013, 35(2):141.
[21] RACHBAUER L, VOITL G, BOCHMANN G, et al. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor[J]. Applied Energy, 2016, 180:483-490.
[22] SEIFERT A H, RITTMANN S, BERNACCHI S, et al. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis[J]. Bioresource Technology, 2013, 136(3):747-751.
[23] LI H L, LARSSON E, THORIN E, et al. Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane[J]. Energy Conversion & Management, 2015, 100:212-219.
[24] XU H, GONG S, SUN Y, et al. High-rate hydrogenotrophic methanogenesis for biogas upgrading:the role of anaerobic granules[J]. Environ. Technol., 2015, 36(1/2/3/4):529-537.
[25] LEE J C, KIM J H, CHANG W S, et al. Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6):844-847.
[26] KIM S, CHOI K, CHUNG J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry[J]. International Journal of Hydrogen Energy, 2013, 38(8):3488-3496.
[27] AKO O Y, KITAMURA Y, INTABON K, et al. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors[J]. Bioresource Technology, 2008, 99(14):6305-6310.
[28] CORD-RUWISCH R, MERCZ T I, HOH C Y, et al. Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters[J]. Biotechnology & Bioengineering, 1997, 56(6):626-634.
[29] POORTER L M I D, GEERTS W J, KELTJENS, et al. Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H2 gassing regimens[J]. Applied & Environmental Microbiology, 2007, 73(3):740-749.
[30] FARDEAU M L, BELAICH J P. Energetics of the growth of Methanococcus thermolithotrophicus[J]. Archives of Microbiology, 1986, 144(4):381-385.
[31] JUD G, SCHNEIDER K, BACHOFEN R. The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures[J]. Journal of Industrial Microbiology & Biotechnology, 1997, 19(4):246-251.
[32] PEILLEX J P, FARDEAU M L, BOUSSAND R, et al. Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2:influence of agitation[J]. Applied Microbiology & Biotechnology, 1988, 29(6):560-564.
[33] MARTIN M R, FORNERO J J, STARK R, et al. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2[J]. Archaea, 2013, 2013:157529.
[34] JU D H, SHIN J H, LEE H K, et al. Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor(Hf-MBfR)[J]. Desalination, 2008, 234(1/2/3):409-415.
[35] KIM J H, CHANG W S, PAK D. Factors affecting biological reduction of CO2 into CH4 using a hydrogenotrophic methanogen in a fixed bed reactor[J]. Korean Journal of Chemical Engineering, 2015, 32(10):2067-2072.
[36] MENOUNOS B, OSBORN G. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system[J]. Bioresource Technology, 2014, 178(28):330-333.
[37] BURKHARDT M, BUSCH G. Methanation of hydrogen and carbon dioxide[J]. Applied Energy, 2013, 111:74-79.
[38] SAVVAS S, DONNELLY J, PATTERSON T, et al. Biological methanation of CO2 in a novel biofilm plug flow reactor:a high rate and low parasitic energy process[J]. Applied Energy, 2017, 202:238-247.
[39] ALITALO A, NISKANEN M, AURA E. Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor[J]. Bioresource Technology, 2015, 196:600-605.
[40] BUGANTE E C, SHIMOMURA Y, TANAKA T, et al. Methane production from hydrogen and carbon dioxide and monoxide in a column bioreactor of thermophilic methanogens by gas recirculation[J]. Journal of Fermentation & Bioengineering, 1989, 67(6):419-421.
[41] JEE H S, NISHIO N, NAGAI S. Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor[J]. Journal of Fermentation Technology, 1988, 66(2):235-238.
[42] JEE H S, YANO T, NISHIO N, et al. Biomethanation of H2 and CO2 by Methanobacterium thermoautotrophicum in membrane and ceramic bioreactors[J]. Journal of Fermentation Technology, 1987, 65(4):413-418.
[43] YANO T, KAN A, NAGAI S. Kinetics of CH4 production from H2 and CO2 in a hollow fiber reactor by plug flow reaction model[J]. Journal of Fermentation & Bioengineering, 1991, 71(3):203-205. |