Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (04): 1364-1373.DOI: 10.16085/j.issn.1000-6613.2017-1139
Previous Articles Next Articles
ZHAO Ningbo, ZHENG Hongtao, WEN Xueyou
Received:
2017-06-13
Revised:
2017-07-13
Online:
2018-04-05
Published:
2018-04-05
赵宁波, 郑洪涛, 闻雪友
通讯作者:
赵宁波(1987-),男,讲师,研究方向为纳米功能燃料、先进燃烧与低排放。
作者简介:
赵宁波(1987-),男,讲师,研究方向为纳米功能燃料、先进燃烧与低排放。E-mail:zhaoningbo314@126.com。
基金资助:
CLC Number:
ZHAO Ningbo, ZHENG Hongtao, WEN Xueyou. Research progress on liquid nanofuel and its combustion enhancement[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1364-1373.
赵宁波, 郑洪涛, 闻雪友. 液态纳米燃料及其强化燃烧研究进展[J]. 化工进展, 2018, 37(04): 1364-1373.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1139
[1] SEDDIEK I S,ELGOHARY M M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions[J]. International Journal of Naval Architecture and Ocean Engineering,2014,6(3):737-748. [2] 宋鹏翔,丁玉龙,文东升. 纳米燃料——一种新的储能载体[J]. 储能科学与技术,2012,1(1):41-49. SONG Pengxiang,DING Yulong,WEN Dongsheng. A novel energy storage carrier:nanofuels[J]. Energy Storage Science and Technology,2012,1(1):41-49. [3] WEN D,LIN G,VAFAEI S,et al. Review of nanofluids for heat transfer applications[J]. Particuology,2009,7(2):141-150. [4] YETTER R A,RISHA G A,SON S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute,2009,32(2):1819-1838. [5] MEHTA R N,CHAKRABORTY M,PARIKH P A. Nanofuels:combustion,engine performance and emissions[J]. Fuel,2014,120:91-97. [6] CORCORAN A L,HOFFMANN V K,DREIZIN E L. Aluminum particle combustion in turbulent flames[J]. Combustion and Flame,2013,160(3):718-724. [7] SHAAFI T,SAIRAM K,GOPINATH A,et al. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel,biodiesel and blends-a review[J]. Renewable and Sustainable Energy Reviews,2015,49:563-573. [8] ABDALLA S,AL-WAFI R,PIZZI A. Stability and combustion of metal nano-particles and their additive impact with diesel and biodiesel on engine efficiency:a comprehensive study[J]. Journal of Renewable and Sustainable Energy,2017,9(2):022701. [9] SIDIK N A C,MOHAMMED H A,ALAWI O A,et al. A review on preparation methods and challenges of nanofluids[J]. International Communications in Heat and Mass Transfer,2014,54:115-125. [10] JAVED I,BAEK S W,WAHEED K,et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame,2013,160(12):2955-2963. [11] JAVED I,BAEK S W,WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame,2015,162(1):191-206. [12] DU M,LI G. Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels[J]. Fuel,2017,194:75-82. [13] SHARIATMADAR F S,PAKDEHI S G. Effect of various surfactants on the stability time of kerosene-boron nanofluids[J]. Micro & Nano Letters,2016,11(9):498-502. [14] JONES M,LI C H,AFJEH A,et al. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol)[J]. Nanoscale Research Letters,2011,6(1):246. [15] TANVIR S,QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power,2014,31(1):408-415. [16] 刘冠楠,朱洁,刘冬. 含铝的醇基纳米流体燃料烧特性研究[C]//2016年中国工程热物理学会燃烧学术会议,2016. LIU Guannan,ZHU Jie,LIU Dong. Combustion characteristic of alcohol based nanofluids fuel containing Al[C]//2016 China National Symposium on Combustion,2016. [17] GAN Y,LIM Y S,QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame,2012,159(4):1732-1740. [18] MIGLANI A,BASU S. Effect of particle concentration on shape de-formation and secondary atomization characteristics of a burning nanotitania dispersion droplet[J]. Journal of Heat Transfer,2015,137(10):102001. [19] SONAWANE S,PATANKAR K,FOGLA A,et al. An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-aviation turbine fuel nanofluids[J]. Applied Thermal Engineering,2011,31(14):2841-2849. [20] E Xiu-tian-feng,PAN L,WWANG F,et al. Al-nanoparticle-containing nanofluid fuel:synthesis,stability,properties,and propulsion performance[J]. Ind. Eng. Chem. Res.,2016,55(10):2738-2745. [21] GHAMARI M,RATNER A. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles[J]. Fuel,2017,188:182-189. [22] KANNAIYAN K,ANOOP K,SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology,2017,139(3):032201. [23] JAVED I,BAEK S W,WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame,2015,162(1):191-206. [24] TYAGI H,PHELAN P E,PRASHER R,et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters,2008,8(5):1410-1416. [25] MEHTA R N,CHAKRABORTY M,PARIKH P A. Nanofuels:combustion,engine performance and emissions[J]. Fuel,2014,120:91-97. [26] GUMUS S,OZCAN H,OZBEY M,et al. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine[J]. Fuel,2016,163:80-87. [27] KIM D M,BAEK S W,YOON J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure[J]. Combustion and Flame,2016,173:106-113. [28] ZHAO N B,LI S Y,YANG J L. A review on nanofluids:data-driven modeling of thermalphysical properties and the application in automotive radiator[J]. Renewable and Sustainable Energy Reviews,2016,66:596-616. [29] 池海. 亲油性纳米钯及碳氢燃料基纳米流体的制备与性能研究[D]. 杭州:浙江大学,2014. CHI Hai. Preparation and properties of hydrophobic palladium nanoparticles and hydrocarbon fuel-based nanofluids[D]. Hangzhou:Zhejiang Universityr,2014. [30] KANNAIYAN K,SADR R. Influence of nanoparticles on spray performance of alternative jet fuels[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition,2016. [31] 鄂秀天凤,彭浩,邹吉军,等. 含有纳米铝颗粒的高密度悬浮燃料研究[J]. 推进技术,2016,37(5):974-978. E Xiu-tian-feng,PENG Hao,ZOU Jijun,et al. Study on Al NPs-containing suspension as high-density liquid fuel[J]. Journal of Propulsion Technology,2016,37(5):974-978. [32] SANJID A, KALAM M A,MASJUKI H H. Performance,combustion and emission characteristics of a DI diesel engine fuelled with nanoparticle blended jatropha biodiesel[J]. RSC Advances,2014,4(70):36973-36982. [33] BIODIESEL B. Effect of metalloid compound and bio-solution additives on biodiesel engine performance and exhaust emissions[J]. American Journal of Applied Sciences,2013,10(10):1201-1213. [34] SHARIATMADAR F S,PAKDEHI S G. Synthesis and characterization of aviation turbine kerosene nanofluid fuel containing boron nanoparticles[J]. Energy & Fuels,2016,30(9):7755-7762. [35] MIGLANI A,BASU S. Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets[J]. Scientific Reports,2015,5:15008. [36] TANVIR S,QIAO L. Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters,2012,7(1):226:1-10. [37] BASU S,MIGLANI A. Combustion and heat transfer characteristics of nanofluid fuel droplets:a short review[J]. International Journal of Heat and Mass Transfer,2016,96:482-503. [38] KANNAIVAN K,ANOOP K,SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology,2017,139(3):032201. [39] SHAAFI T,VELRAJ R. Influence of alumina nanoparticles,ethanol and isopropanol blend as additive with diesel-soybean biodiesel blend fuel:combustion,engine performance and emissions[J]. Renewable Energy,2015,80:655-663. [40] GAN Y,QIAO L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections[J]. International Journal of Heat and Mass Transfer,2011,54(23):4913-4922. [41] JAVED I,BAEK S W,WAHEED K. Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame,2013,160(1):170-183. [42] JAVED I,BAEK S W,WAHEED K. Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures:the phenomenon of microexplosion[J]. Experimental Thermal and Fluid Science,2014,56:33-44. [43] 袁银男,纪晨,梅德清,等. 纳米颗粒添加剂对柴油挥发及氧化过程的影响[J]. 江苏大学学报(自然科学版),2015,36(6):265-270. YUAN Yinnan,JI Chen,MEI Deqing,et al. Effects of nano-particles on volatilization and oxidation characteristics of diesel fuel[J]. Journal of Jiangsu University(Natural Science Edition),2015,36(6):265-270. [44] JACKSON D,DAVIDSON D,HANSON R. Application of an aerosol shock tube for the kinetic studies of n-dodecane/nano-aluminum slurries[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2008. [45] 王琪,朱宝忠,孙运兰. 乙醇基纳米流体燃料液滴着火燃烧研究[C]//2016年中国工程热物理学会燃烧学术会议,2016. WANG Qi,ZHU Baozhong,SUN Yunlan. Droplet combustion of ethyl alcohol based nanofluids fuel[C]//2016 China National Symposium on Combustion,2016. [46] 王方,鄂秀天凤,郭成,等. 油溶性钯纳米颗粒催化高密度燃料点火燃烧研究[J]. 推进技术,2016,37(3):572-577. WANG Fang,E Xiu Tian-feng,GUO Cheng,et al. Hydrocarbon fuel-soluble palladium nanoparticles for catalytic combustion of high density fuel[J]. Journal of Propulsion Technology,2016,37(3):572-577. [47] 阚伟民,章先涛,江浩庆,等. 悬浮纳米颗粒对液体燃料着火点的影响[J]. 热科学与技术,2015,14(1):63-67. KAN Weimin,ZHANG Xiantao,JIANG Haoqing,et al. Effect of suspended nano-sized particle on liquid fuel ignition[J]. Journal of Thermal Science and Technology,2015,14(1):63-67. [48] GAN Y,QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame,2011,158(2):354-368. [49] GAN Y,LIM Y S,QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame,2012,159(4):1732-1740. [50] LIU G N,LIU D. Combustion characteristics of nanofluid fuels in a half-opening slot tube[J]. Science China Technological Sciences,2017, 60(7):1075-1087. [51] BELLO M N,PANTOYA M L,KAPPAGANTULA K,et al. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles[J]. Energy & Fuels,2015,29(9):6111-6117. [52] SAXENA V,KUMAR N,SAXENA V K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine[J]. Renewable and Sustainable Energy Reviews,2017,70:563-588. [53] KHOND V W,KRIPLANI V M. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine:a comprehensive review[J]. Renewable and Sustainable Energy Reviews,2016,59:1338-1348. [54] KUMAR M V,BABU A V,KUMAR P R. The impacts on combustion,performance and emissions of biodiesel by using additives in direct injection diesel engine[J]. Alexandria Engineering Journal,2017. https://doi.org/10.1016/j.aej.2016.12.016. [55] VENU H,MADHAVAN V. Effect of Al2O3 nanoparticles in bio-diesel-diesel-ethanol blends at various injection strategies:performance,combustion and emission characteristics[J]. Fuel,2016,186:176-189. [56] SELVAN V A M,ANAND R B,UDAYAKUMAR M. Effect of cerium oxide nanoparticles and carbon nanotubes as fuel-borne additives in diesterol blends on the performance,combustion and emission characteristics of a variable compression ratio engine[J]. Fuel,2014,130:160-167. [57] DEBBARMA S,MISRA R D. Effects of iron nanoparticles blended biodiesel on the performance and emission characteristics of a diesel engine[J]. Journal of Energy Resources Technology,2017,139(4):042212. [58] CHANDRASEKARAN V,ARTHANARISAMY M,NACHIAPPAN P,et al. The role of nano additives for biodiesel and diesel blended transportation fuels[J]. Transportation Research Part D:Transport and Environment,2016,46:145-156. [59] LENIN M A,SWAMINATHAN M R,KUMARESAN G. Performance and emission characteristics of a DI diesel engine with a nanofuel additive[J]. Fuel,2013,109:362-365. [60] ÖZGUR T,ÖZCANLI M,AYDIN K. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine[J]. International Journal of Green Energy,2015,12(1):51-56. [61] EI-SEESY A I,ABDEL-RAHMAN A K,BADY M,et al. Performance,combustion,and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives[J]. Energy Conversion and Management,2017,135:373-393. [62] SADHIK B J,ANAND R B. Role of nanoadditive blended bio-diesel emulsion fuel on the working characteristics of a diesel engine[J]. Journal of Renewable and Sustainable Energy,2011,3(2):023106. [63] BASHA J S,ANAND R B. An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel[J]. Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2011,225(3):279-288. [64] BASHA J S,ANAND R B. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2013,35(3):257-264. [65] RAO M S,ANAND R B. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles[J]. Applied Thermal Engineering,2016,98:636-645. [66] KARTHIKEYAN S,ELANGO A,PRATHIMA A. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends[J]. International Journal of Green Energy,2016,13(3):267-273. [67] KARTHIKEYAN S,PRATHIMA A. Analysis of emissions from use of an algae biofuel with nano-ZrO2[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2017,39(5):473-479. [68] KARTHIKEYAN S,PRATHIMA A. Environmental effect of CI engine using microalgae methyl ester with doped nano additives[J]. Transportation Research Part D:Transport and Environment,2017,50:385-396. [69] YANG W M,AN H,CHOU S K,et al. Emulsion fuel with novel nano-organic additives for diesel engine application[J]. Fuel,2013,104:726-731. [70] YANG W M,AN H,CHOU S K,et al. Impact of emulsion fuel with nano-organic additives on the performance of diesel engine[J]. Applied Energy,2013,112:1206-1212. [71] SARAEE H S,JAFARMADAR S,TAGHAVIFAR H,et al. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles[J]. International Journal of Environmental Science and Technology,2015,12(7):2245-2252. [72] KAO M J,TING C C,LIN B F,et al. Aqueous aluminum nanofluid combustion in diesel fuel[J]. Journal of Testing and Evaluation,2007,36(2):1-5. [73] SAJITH V,SOBHAN C B,PETERSON G P. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel[J]. Advances in Mechanical Engineering,2010,2010:1-6. [74] 邬齐敏,孙平,梅德清,等. 纳米燃油添加剂CeO2提高柴油燃烧效率减少排放[J]. 农业工程学报,2013,29(9):64-69. WU Qimin,SUN Ping,MEI Deqing,et al. Nano-fuel additive CeO2 on promoting efficient combustion and reducing emissions of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(9):64-69. [75] 郝保红,蒋濛璠,段秋桐,等. 纳米三氧化二铝在柴油尾气净化中的活性评价[J]. 北京石油化工学院学报,2013,21(1):8-11. HAO Baohong,JIANG Mengfan,DUAN Qiutong,et al. Activity evaluation of nano-Al2O3 in diesel[J]. Journal of Beijing Institute of Petro-Chemical Technology,2013,21(1):8-11. [76] 李明显. CNT及MoO3纳米柴油的燃烧过程和排放特性研究[D]. 镇江:江苏大学,2016. LI Mingxian. Study on combustion process and emission characteristics for CNT and MoO3 nano-diesel[D]. Zhenjiang:Jiangsu University,2016. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[3] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[4] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[5] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[6] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[7] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[8] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[9] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[10] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[11] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[12] | ZHANG Wei, AN Xingye, LIU Liqin, LONG Yinying, ZHANG Hao, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. |
[13] | JIANG Huayi, HU Juan, QI Hongyuan, YOU Yanzhen, WANG Yulong, WU Zhe. Effect of magnetic nanoparticles type and mass concentration on microwave pyrolysis of oily sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3908-3914. |
[14] | ZHANG Ruirui, WANG Ning, GAO Zhi, YU Xiaohui, YANG Bin. Analysis of supercooling characteristics of erythritol/mannitol [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2959-2966. |
[15] | SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |