Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (04): 1314-1322.DOI: 10.16085/j.issn.1000-6613.2017-2436
Previous Articles Next Articles
XU Chaozhong, FENG Lianfang
Received:
2017-11-27
Revised:
2018-01-23
Online:
2018-04-05
Published:
2018-04-05
许超众, 冯连芳
通讯作者:
冯连芳,教授。
作者简介:
许超众(1990-),男,博士研究生,研究方向为聚合反应工程。E-mail:xu.chao.zhong@163.com。
CLC Number:
XU Chaozhong, FENG Lianfang. Process intensification technologies for polymerization[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1314-1322.
许超众, 冯连芳. 聚合过程强化技术的发展[J]. 化工进展, 2018, 37(04): 1314-1322.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-2436
[1] STANKIEWICZ A,MOULIJN J A. Process intensification:transforming chemical engineering[J]. Chemical Engineering Progress,2000,96(1):22-34. [2] VAN GERVEN T,STANKIEWICZ A. Structure,energy,synergy,time-the fundamentals of process intensification[J]. Industrial & Engineering Chemistry Research,2009,48(5):2465-2474. [3] 费维扬. 过程强化的若干新进展[J]. 世界科技研究与发展,2004,26(5):1-4. FEI Weiyang. The progress of process intensification[J]. World Sci-Tech R&D,2004,26(5):1-4. [4] 孙宏伟,陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展,2011,30(1):1-15. SUN Hongwei,CHEN Jianfeng. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress,2011,30(1):1-15. [5] 史子瑾. 聚合反应工程基础[M]. 北京:化学工业出版社,1991. SHI Zijin. Fundamentals of polymer reaction engineering[M]. Beijing:Chemical Industry Press,1991. [6] 陈光文,袁权. 微化工技术[J]. 化工学报,2003,54(4):427-439. CHEN Guangwen,YUAN Quan. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China),2003,54(4):427-439. [7] 宋顺刚,顾雪萍,王嘉骏,等. 微反应器在聚合反应中的应用[J]. 化工进展,2012,31(2):259-267. SONG Shungang,GU Xueping,WANG Jiajun,et al. Application of microreactors in polymerization[J]. Chemical Industry and Engineering Progress,2012,31(2):259-267. [8] BALLY F,SERRA C A,HESSEL V,et al. Micromixer-assisted polymerization processes[J]. Chemical Engineering Science,2011,66(7):1449-1462. [9] IWASAKI T,YOSHIDA J. Free radical polymerization in microreactors. significant improvement in molecular weight distribution control[J]. Macromolecules,2005,38(4):1159-1163. [10] SERRA C,SARY N,SCHLATTER G,et al. Numerical simulation of polymerization in interdigital multilamination micromixers[J]. Lab on a Chip,2005,5(9):966-973. [11] SERRA C,SCHLATTER G,SARY N,et al. Free radical polymerization in multilaminated microreactors:2D and 3D multiphysics CFD modeling[J]. Microfluidics and Nanofluidics,2007,3(4):451-461. [12] WU T,MEI Y,XU C,et al. Block copolymer PEO-b-PHPMA synthesis using controlled radical polymerization on a chip[J]. Macromolecular Rapid Communications,2005,26(13):1037-1042. [13] IWASAKI T,YOSHIDA J. CF3SO3H initiated cationic polymerization of diisopropenylbenzenes in macrobatch and microflow systems[J]. Macromolecular Rapid Communications,2007,28(11):1219-1224. [14] LIU S,CHANG C H. High rate convergent synthesis and deposition of polyamide dendrimers using a continuous-flow microreactor[J]. Chemical Engineering & Technology,2007,30(3):334-340. [15] HOANG P H,NGUYEN C T,PERUMAL J,et al. Droplet synthesis of well-defined block copolymers using solvent-resistant microfluidic device[J]. Lab on a Chip,2011,11(2):329-335. [16] XU C,BARNES S E,WU T,et al. Solution and surface composition gradients via microfluidic confinement:fabrication of a statistical-copolymer-brush composition gradient[J]. Advanced Materials,2006,18(11):1427-1430. [17] ROSENFELD C,SERRA C,BROCHON C,et al. Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations[J]. Chemical Engineering Journal,2008,135(s1):S242-S246. [18] NAGAKI A,TOMIDA Y,YOSHIDA J I. Microflow-system-controlled anionic polymerization of styrenes[J]. Macromolecules,2008,41(17):6322-6330. [19] NAGAKI A,KAWAMURA K,SUGA S,et al. Cation pool-initiated controlled/living polymerization using microsystems[J]. Journal of the American Chemical Society,2004,126(45):14702-14703. [20] XIE P,WANG K,WANG P,et al. Synthesizing bromobutyl rubber by a microreactor system[J]. AIChE Journal,2017,63(3):1002-1009. [21] NI X,ZHANG Y,MUSTAFA I. An investigation of droplet size and size distribution in methylmethacrylate suspensions in a batch oscillatory-baffled reactor[J]. Chemical Engineering Science,1998,53(16):2903-2919. [22] NI X,ZHANG Y,MUSTAFA I. Correlation of polymer particle size with droplet size in suspension polymerisation of methylmethacrylate in a batch oscillatory-baffled reactor[J]. Chemical Engineering Science,1999,54(6):841-850. [23] NI X,JOHNSTONE J C,SYMES K C,et al. Suspension polymerization of acrylamide in an oscillatory baffled reactor:from drops to particles[J]. AIChE Journal,2001,47(8):1746-1757. [24] LOBRY E,LASUYE T,GOURDON C,et al. Liquid-liquid dispersion in a continuous oscillatory baffled reactor-application to suspension polymerization[J]. Chemical Engineering Journal,2015,259:505-518. [25] 陈国南,李广赞,王嘉骏,等. 泰勒反应器中流体流动及停留时间分布研究[J]. 化学工程,2005,33(6):22-25. CHEN Guonan,LI Guangzan,WANG Jiajun,et al. Study on fluid flow and residence time distribution in Taylor vortex flow reactor[J]. Chemical Engineering(China),2005,33(6):22-25. [26] 董杰. 泰勒反应器中细乳液聚合的研究[D]. 杭州:浙江大学,2010. DONG Jie. Miniemulsion polymerization in Taylor reactor[D]. Hangzhou:Zhejiang University,2010. [27] PAUER W,MORITZ H. Continuous reactor concepts with superimposed secondary flow-polymerization process intensification[J]. Macromolecular Symposia,2006,243(1):299-308. [28] RÜTTGERS D,NEGOITA I,PAUER W,et al. Process intensification of emulsion polymerization in the continuous Taylor reactor[J]. Macromolecular Symposia,2007,259(1):26-31. [29] GONZALEZ G,COLMENAR E,DIACONU G,et al. Production of widely different dispersed polymers in a continuous Taylor-Couette reactor[J]. Macromolecular Reaction Engineering,2009,3(5/6):233-240. [30] AOUNE A,RAMSHAW C. Process intensication:heat and mass transfer characteristics of liquid films on rotating discs[J]. International Journal of Heat and Mass Transfer,1999,42(14):2543-2556. [31] STANKIEWICZ A,MOULIJN J A. Re-engineering the chemical processing plant:process intensification[M]. Florida:CRC Press,2003. [32] JACOBSEN N C,HINRICHSEN O. Micromixing efficiency of a spinning disk reactor[J]. Industrial & Engineering Chemistry Research,2012,51(36):11643-11652. [33] LADDHA G S,DEGALEESAN T E. Transport phenomena in liquid extraction[M]. New York:McGraw-Hill,1978. [34] PASK S D,CAI Z,HELMUT M,et al. The spinning disk reactor for polymers and nanoparticles[J]. Macromolecular Reaction Engineering,2013,7(2):98-106. [35] PASK S D,NUYKEN O,CAI Z. The spinning disk reactor:an example of a process intensification technology for polymers and particles[J]. Polymer Chemistry,2012,3(10):2698-2707. [36] MOGHBELI M R,MOHAMMADI S,ALAVI S M. Bulk free-radical polymerization of styrene on a spinning disc reactor[J]. Journal of Applied Polymer Science,2009,113(2):709-715. [37] DOBIE C G,MARIJAVICEVIC,BOODHOO K V K. An evaluation of the effectiveness of continuous thin film processing in a spinning disc reactor for bulk free-radical photo-copolymerisation[J]. Chemical Engineering and Processing:Process Intensification,2013,71:97-106. [38] VICEVIC M,NOVAKOVIC K,BOODHOO K V K,et al. Kinetics of styrene free radical polymerisation in the spinning disc reactor[J]. Chemical Engineering Journal,2008,135(1):78-82. [39] LEVESON P,DUNK W,JACHUCK R J. Numerical investigation of kinetics of free-radical polymerization on spinning disk reactor[J]. Journal of Applied Polymer Science,2003,90(3):693-699. [40] 冯连芳,曹松峰,顾雪萍,等. 高粘搅拌聚合反应装置[J]. 合成橡胶工业,2001,24(5):257-261. FENG Lianfang,CAO Songfeng,GU Xueping,et al. Highly viscous stirred polymerization reactor[J]. China Synthetic Rubber Industry,2001,24(5):257-261. [41] 成文凯,王嘉骏,顾雪萍,等. 聚合物搅拌脱挥设备及其CFD模拟研究进展[J]. 化工进展,2016,35(5):1283-1288. CHENG Wenkai,WANG Jiajun,GU Xueping,et al. Progress on agitated apparatus for polymer devolatilization and its CFD simulation[J]. Chemical Industry and Engineering Progress,2016,35(5):1283-1288. [42] ARNAUD D,KUNZ A,FLEURY P A. Devices for carrying out mechanical,chemical and/or thermal processes:US9126158[P]. 2015-09-08. [43] FLEURY P A,KUNKEL R. Devices for carrying out mechanical,chemical and/or thermal processes:US14/368626[P]. 2012-12-27. [44] SAFRIT B T,DIENER A E. Kneader technology for the direct devolatilization of temperature sensitive elastomers[C]//Annual Technical Conference(ANTEC). Milwaukee,USA,2008. [45] ZHAO H,SHAO L,CHEN J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal,2010,156(3):588-593. [46] 邹海魁,初广文,向阳,等. 超重力反应强化技术最新进展[J]. 化工学报,2015,66(8):2805-2809. ZOU Haikui,CHU Guangwen,XIANG Yang,et al. New progress of HIGEE reaction technology[J]. CIESC Journal,2015,66(8):2805-2809. [47] 张雷,高花,邹海魁,等. 丁基橡胶聚合新型超重力反应器工艺[J]. 化工学报,2008,59(1):260-263. ZHANG Lei,GAO Hua,ZOU Haikui,et al. Preparation of butyl rubber by new high-gravity technology[J]. Journal of Chemical Industry and Engineering(China),2008,59(1):260-263. [48] 陈建峰,高花,吴一弦,等. 一种丁基橡胶的制备方法:200710110412.0[P]. 2008-02-27. CHEN Jianfeng,GAO Hua,WU Yixian,et al. A method to prepare butyl rubber:200710110412.0[P]. 2008-02-27. [49] HAW J K. Mass transfer of centrifugally enhanced polymer devolatilization by using foam metal bed[D]. Cleveland,Ohio:Case Western Reserve University,1995. [50] SUNDMACHER K,KIENLE A. Reactive distillation[M]. Weinheim:Wiley-VCH,2002. [51] SHAH M,ZONDERVAN E,OUDSHOORN M L,et al. A novel process for the synthesis of unsaturated polyester[J]. Chemical Engineering and Processing:Process Intensification,2011,50(8):747-756. [52] SHAH M,KISS A A,ZONDERVAN E,et al. Pilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillation[J]. Chemical Engineering Journal,2012,213:175-185. [53] LOMELI-RODRIGUEZ M,RIVERA-TOLEDO M,LOPEZ-SANCHEZ J A. Process intensification of the synthesis of biomass-derived renewable polyesters:reactive distillation and divided wall column polyesterification[J]. Industrial & Engineering Chemistry Research,2017,56(11):3017-3032. [54] 马里诺·赞索斯. 反应挤出——原理与实践[M]. 瞿金平,李光吉,周南桥,等译. 北京:化学工业出版社,1999. MARINO Xanthos. Reactive extrusion:principles and practice[M]. QU Jingping,LI Guangji,ZHOU Nanqiao,et al. trans. Beijing:Chemical Industry Press,1999. [55] 王益龙,刘安栋. 反应挤出技术研究进展[J]. 现代塑料加工应用,2004,16(2):35-39. WANG Yilong,LIU Andong. Development in reactive extrusion technology[J]. Modern Plastics Processing and Applications,2004,16(2):35-39. [56] 张才亮. 聚合物反应挤出相容剂的合成与表征[D]. 杭州:浙江大学,2005. ZHANG Cailiang. The synthesis and characterization of compatibilizator using the reaction extrusion of polymers[D]. Hangzhou:Zhejiang University,2005. [57] LIU H,YAO Z,CAO K,et al. Characteristic analysis on a reactive extrusion process for the imidization of poly(styrene-co-maleic anhydride) with aniline[J]. Chemical Engineering Science,2010,65(5):1781-1789. [58] YUAN X,GUAN Y,LI S,et al. Anionic bulk polymerization to synthesize styrene-isoprene diblock and multiblock copolymers by reactive extrusion[J]. Journal of Applied Polymer Science,2014,131(2):1-9. [59] 季薇芸. "反应型相容示踪剂"方法研究聚合物反应共混中的界面反应和形态演变[D]. 杭州:浙江大学,2016. JI Weiyun. A concept of reactive compatibilizer-tracer for studying the interfacial reaction and evolution of morphology in reactive polymer blending[D]. Hangzhou:Zhejiang University,2016. [60] 廖传华,周勇军. 超临界流体技术及其过程强化[M]. 北京:中国石化出版社,2007. LIAO Chuanhua,ZHOU Yongjun. Supercritical fluid technology and process intensification[M]. Beijing:China Petrochemical Press,2007. [61] 张怀平,陈鸣才. 超临界二氧化碳中的聚合反应[J]. 化学进展,2009,21(9):1869-1879. ZHANG Huaiping,CHEN Mingcai. Polymerization in surpercritical carbon dioxide[J]. Progress in Chemistry,2009,21(9):1869-1879. [62] MA C,CAO L,WANG X,et al. Characterization and adsorption capacity of a novel high-performance polymeric sorbent synthesized in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2012,62:232-239. [63] ALAIMO D,GRIGNARD B,KUPPAN C,et al. A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide[J]. Polymer Chemistry,2017,8(3):581-591. [64] BASSETT S P,BIRKIN N A,JENNINGS J,et al. One-pot synthesis of micron-sized polybetaine particles; innovative use of supercritical carbon dioxide[J]. Polymer Chemistry,2017,8(31):4557-4564. [65] DOBIE C G,BOODHOO K V K. Surfactant-free emulsion polymerisation of methyl methacrylate and methyl acrylate using intensified processing methods[J]. Chemical Engineering and Processing:Process Intensification,2010,49(9):901-911. [66] BHANVASE B A,PINJARI D V,GOGATE P R,et al. Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization[J]. Chemical Engineering and Processing:Process Intensification,2011,50(11/12):1160-1168. [67] MEULDIJK J,VAN DE KRUIJS B H P,VAN VEKEMANS J A J M,et al. A novel production route for nylon-6:aspects of microwave-enhanced catalysis[J]. Macromolecular Symposia,2011,302(1):69-79. [68] DUBEY S P,ABHYANKAR H A,MARCHANTE V,et al. Microwave energy assisted synthesis of poly lactic acid via continuous reactive extrusion:modelling of reaction kinetics[J]. RSC Advances,2017,7(30):18529-18538. |
[1] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[2] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[3] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[4] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[5] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[6] | ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, WANG Tao, FENG Yingnan, REN Yongsheng, ZHAO Zhiping. Research progress on microporous supporting substrate of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. |
[7] | ZHAO Wangrui, LIU Yan, ZHANG Wei, DENG Huining. Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1508-1514. |
[8] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[9] | ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. |
[10] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[11] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
[12] | WANG Qiaoyi, LU Shaofeng, SHI Wenzhao, HONG Xun, YAO Dongxia, ZHANG Ling. Preparation and properties of polyurea/polyurethane shell microencapsulated essence by interfacial polymerization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4432-4440. |
[13] | SHAN Qingwen, ZHANG Juan, WANG Yajuan, LIU Wenqiang. Synthesis of polymeric ionic liquid and its performance on adsorption desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4571-4579. |
[14] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[15] | SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |