Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (12): 4575-4585.DOI: 10.16085/j.issn.1000-6613.2017-0516
Previous Articles Next Articles
ZHANG Xiong1, XU Zhixiang1, LI Xuehui1, GUAN Jianyu1, LONG Jinxing1,2
Received:
2017-03-28
Revised:
2017-04-28
Online:
2017-12-05
Published:
2017-12-05
张雄1, 徐志祥1, 李雪辉1, 关建郁1, 龙金星1,2
通讯作者:
龙金星,副教授,研究方向为催化新材料及其在生物质高值化利用过程中的应用。
作者简介:
张雄(1991-),男,硕士研究生。
基金资助:
CLC Number:
ZHANG Xiong, XU Zhixiang, LI Xuehui, GUAN Jianyu, LONG Jinxing. Chemical isomerization of glucose into fructose[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4575-4585.
张雄, 徐志祥, 李雪辉, 关建郁, 龙金星. 葡萄糖化学催化异构制备果糖研究进展[J]. 化工进展, 2017, 36(12): 4575-4585.
[1] RACKEMANN D W,DOHERTY W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels Bioproducts & Biorefining-Biofpr,2011,5(2):198-214. [2] VAN PUTTEN R J,VAN DER WAAL J C,DE JONG E,et al. Hydroxymethylfurfural,a versatile platform chemical made from renewable resources[J]. Chemical Reviews,2013,113(3):1499-1597. [3] 姜楠,齐崴,黄仁亮,等. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展,2011,30(9):1937-1945. JIANG N,QI W,HUANG R L,et al. Research progress of synthesis of 5-hydroxymethylfurfural from biomass[J]. Chemical Industry and Engineering Progress,2011,30(9):1937-1945. [4] 彭红,刘玉环,张锦胜,等. 生物质生产乙酰丙酸研究进展[J]. 化工进展,2009,28(12):2237-2241. PENG H,LIU Y H,ZHANG J S,et al. Progress in production of levulinic and from biomass[J]. Chemical Industry and Engineering Progress,2009,28(12):2237-2241. [5] BINDER J B,RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985. [6] LI C Z,ZHANG Z H,ZHAO Z B K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters,2009,50(38):5403-5405. [7] MA H,WANG F R,YU Y H,et al. Autocatalytic production of 5-hydroxymethylfurfural from fructose-based carbohydrates in a biphasic system and its purification[J]. Industrial & Engineering Chemistry Research,2015,54(10):2657-2666. [8] QI X H,WATANABE M,AIDA T M,et al. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating[J]. Catalysis Communications,2008,9(13):2244-2249. [9] CRANE R K. Intestinal absorption of sugars[J]. Physiological Reviews,1960,40(4):789-825. [10] CRAPO P A,OLEFSKY J M. Fructose-its characteristics,physiology,and metabolism[J]. Nutrition Today,1980,15(4):10-15. [11] PALAZZ E,CONVERTI A. Generalized linearization of kinetics of glucose isomerization to fructose by immobilized glucose isomerase[J]. Biotechnology and Bioengineering,1999,63(3):273-284. [12] BUCHHOLZ K,SEIBEL J. Industrial carbohydrate biotransformations[J]. Carbohydrate Research,2008,343(12):1966-1979. [13] 马清泉,黄友梅,刘文圣,等. 用金属离子处理多孔Al2O3载体对葡萄糖异构酶固载化的影响[J]. 分子催化,1991,5(2):178-183. MA Q Q,HUANG Y M,LIU W S,et al. Effect of pretreating Al2O3 support with metal ions on the immobilization of glucose isomerase[J]. Journal of Molecular Catalysis,1991,5(2):178-183. [14] BHOSALE S H,RAO M B,DESHPANDE V V. Molecular and industrial aspects of glucose isomerase[J]. Microbiological Reviews,1996,60(2):280-300. [15] DE BRUYN C,VAN EKENSTEIN W A. Action des alcalis sur les sucres. Ⅱ. Transformation réciproque des uns dans les autres des sucres glucose,fructose et mannose[J]. Recueil des Travaux Chimiques des Pays-Bas,1895,14(7):203-216. [16] KNILL C J,KENNEDY J F. Degradation of cellulose under alkaline conditions[J]. Carbohydrate Polymers,2003,51(3):281-300. [17] YANG B Y,MONTGOMERY R. Alkaline degradation of glucose:effect of initial concentration of reactants[J]. Carbohydrate Research,1996,280(1):27-45. [18] DE BRUIJN J M,KIEBOOM A P G,VAN BEKKUM H. Alkaline degradation of monosaccharides Part Ⅶ. A mechanistic picture[J]. Starch-Stärke,1987,39(1):23-28. [19] DE BRUIJN J M,KIEBOOM A P G,VAN BEKKUM H. Alkaline degradation of monosaccharidesⅤ:kinetics of the alkaline isomerization and degradation of monosaccharides[J]. Recueil des Travaux Chimiques des Pays-Bas,1987,106(2):35-43. [20] LIU C,CARRAHER J M,SWEDBERG J L,et al. Selective base-catalyzed isomerization of glucose to fructose[J]. ACS Catalysis,2014,4(12):4295-4298. [21] YANG Q,SHERBAHN M,RUNGE T. Basic amino acids as green catalysts for isomerization of glucose to fructose in water[J]. ACS Sustainable Chemistry & Engineering,2016,4(6):3526-3534. [22] RENDLEMAN J A,HODGE J E. Complexes of carbohydrates with aluminate ion. Aldose-ketose interconversion on anion-exchange resin (aluminate and hydroxide forms)[J]. Carbohydrate Research,1979,75:83-99. [23] VAN DEN BERG R,PETER J A,VAN BEKKUM H. The structure and(local)stability constants of borate esters of mono-and di-saccharides as studied by 11B and 13C NMR spectroscopy[J]. Carbohydrate Research,1994,253:1-12. [24] MENDICINO J F. Effect of borate on the alkali-catalyzed isomerization of sugars1[J]. Journal of the American Chemical Society,1960,82(18):4975-4979. [25] DELIDOVICH I,PALKOVITS R. Fructose production viaextraction-assisted isomerization of glucose catalyzed by phosphates[J]. Green Chemistry,2016,18(21):5822-5830. [26] 陈忠明,陶克毅. 固体碱催化剂的研究进展[J]. 化工进展,1994,13(2):18-25. CHEN Z M,TAO K Y. Research advancement of solid basic catalysts[J]. Chemical Industry and Engineering Progress,1994,13(2):18-25. [27] MOREAU C,DURAND R,ROUX A,et al. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites[J]. Applied Catalysis A:General,2000,193(1):257-264. [28] LIMA S,DIAS A S,LIN Z,et al. Isomerization of D-glucose to D-fructose over metallosilicate solid bases[J]. Applied Catalysis A:General,2008,339(1):21-27. [29] DELIDOVICH I,PALKOVITS R. Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose[J]. Journal of Catalysis,2015,327:1-9. [30] KITAJIMA H,HIGASHINO Y,MATSUDA S,et al. Isomerization of glucose at hydrothermal condition with TiO2,ZrO2,CaO/ZrO2 or TiO2/ZrO2[J]. Catalysis Today,2016,274:67-72. [31] 李冰杰,史秀锋,刘秀芳,等. ZnAl水滑石负载钯催化剂的制备及催化性能[J]. 化工进展,2014,33(10):2661-2664. LIU B J,SHI X F,LIU X F,et al. Preparation of hydrotalcite-supported palladium catalysts and their catalytic performances[J]. Chemical Industry and Engineering Progress,2014,33(10):2661-2664. [32] CHIBWE K,JONES W. Intercalation of organic and inorganic anions into layered double hydroxides[J]. Journal of the Chemical Society,Chemical Communications,1989,14:926-927. [33] MCKENZIE A L,FISHEL C T,DAVIS R J. Investigation of the surface structure and basic properties of calcined hydrotalcites[J]. Journal of Catalysis,1992,138(2):547-561. [34] DELIDOVICH I,PALKOVITS R. Catalytic activity and stability of hydrophobic Mg-Al hydrotalcites in the continuous aqueous-phase isomerization of glucose into fructose[J]. Catalysis Science & Technology,2014,4(12):4322-4329. [35] OHARA M,TAKAGAKI A,NISHIMURA S,et al. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A-General,2010,383(1/2):149-155. [36] COLUCCIA S,BOCCUZZI F,GHIOTTI G,et al. Infrared study of hydrogen adsorption on MgO,CaO and SrO. Possible mechanism in promoting O formation[J]. Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1982,78(7):2111-2119. [37] YANG Q,ZHOU S,RUNGE T. Magnetically separable base catalysts for isomerization of glucose to fructose[J]. Journal of Catalysis,2015,330:474-484. [38] DESPAX S,ESTRINE B,HOFFMANN N,et al. Isomerization of D-glucose into D-fructose with a heterogeneous catalyst in organic solvents[J]. Catalysis Communications,2013,39:35-38. [39] SON P A,NISHIMURA S,EBITANI K. Preparation of zirconium carbonate as water-tolerant solid base catalyst for glucose isomerization and one-pot synthesis of levulinic acid with solid acid catalyst[J]. Reaction Kinetics Mechanisms and Catalysis,2014,111(1):183-197. [40] HARRIS D W,FEATHER M S. Evidence for a C-2→C-1 intramolecular hydrogen-transfer during the acid-catalyzed isomerization of D-glucose to D-fructose ag[J]. Carbohydrate Research,1973,30(2):359-365. [41] TANG J,GUO X,ZHU L,et al. Mechanistic study of glucose-to-fructose Isomerization in water catalyzed by[Al(OH)2 (aq)]+[J]. ACS Catalysis,2015,5(9):5097-5103. [42] YANG Y,HU C W,ABU-OMAR M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green Chemistry,2012,14(2):509-513. [43] ROMAN-LESHKOV Y,DAVIS M E. Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media[J]. ACS Catalysis,2011,1(11):1566-1580. [44] TAAMING E,SARAVANAMURUGAN S,HOLM M S,et al. Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem,2009,2(7):625-627. [45] MOLINER M,ROMAN-LESHKOV Y,DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences,2010,107(14):6164-6168. [46] LIU M,JIA S,LI C,et al. Facile preparation of Sn-β zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose[J]. Chinese Journal of Catalysis,2014,35(5):723-732. [47] GOUNDER R,DAVIS M E. Titanium-beta zeolites catalyze the stereospecific isomerization of D-Glucose to L-Sorbose via intramolecular C5-C1 hydride shift[J]. ACS Catalysis,2013,3(7):1469-1476. [48] 李腾,刘玥,刘海超. 甲醇中H-Beta分子筛高效催化葡萄糖异构反应[C]//中国化学会第29届学术年会,北京,2014. LI T,LIU Y,LIU H C. Efficient isomerization of glucose catalyzed by H-Beta in methanol[C]//The 29 Annual Meeting of the Chinese Chemical Society,Bejing,2014. [49] SARAVANAMURUGAN S,PANIAGUA M,MELERO J A,et al. Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media[J]. Journal of the American Chemical Society,2013,135(14):5246-5249. [50] MEEK S T,GREATHOUSE J A,ALLENGORF M D. Metal-organic frameworks:a rapidly growing class of versatile nanoporous materials[J]. Advanced Materials,2011,23(2):249-67. [51] AKIYAMA G,MATSUDA R,SATO H,et al. Catalytic glucose isomerization by porous coordination polymers with open metal sites[J]. Chemistry:An Asian Journal,2014,9(10):2772-2777. [52] 苏叶,鲍宗必,张治国,等. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水制备5-羟甲基糠醛[J]. 化工学报,2016,67(7):2799-2807. SU Y,BAO Z B,ZHANG Z G,et al. Sulfonic acid functionalized MIL-101(Cr) catalysts with tunable Lewis acid and Brönsted acid sites for glucose dehydration to 5-HMF[J]. CIESC Journal,2016,67(7):2799-2807. [53] 蒋平平,李晓婷,冷炎,等. 离子液体制备及其化工应用进展[J]. 化工进展,2014,33(11):2815-2828. JIANG P P,LI X T,LENG Y,et al. Preparation and application of ionic liquids[J]. Chemical Industry and Engineering Progress,2014,33(11):2815-2828. [54] ZHAO H,HOLLADAY J E,BROWN H,et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600. [55] 陶芙蓉,崔月芝,庄辰,等. 离子液体对锯末中纤维素的溶解及再生研究[J]. 分子催化,2013,27(5):420-428. TAO F R,CUI Y Z,ZHUANSG C,et al. The dissolution and regeneration of cellulose in sawdust from ionic liquids[J]. Journal of Molecular Catalysis,2013,27(5):420-428. [56] ROMÁN-LESHKOV Y,MOLINER M,LABINGER J A,et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition,2010,49(47):8954-8957. [57] CATTAHER J M,FLEITMAN C N,TESSONNIER J P. Kinetic and mechanistic study of glucose isomerization using homogeneous organic Brønsted base catalysts in water[J]. ACS Catalysis,2015,5(6):3162-3173. [58] LI G,PIDKO E A,HENSEN E J M. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites:a theoretical perspective[J]. Catalysis Science & Technology,2014,4(8):2241-2250. [59] QIAN X H. Mechanisms and energetics for Bronsted acid-catalyzed glucose condensation,dehydration and isomerization reactions[J]. Topics in Catalysis,2012,55(3/4):218-226. [60] QIAN X H,WEI X F. Glucose isomerization to fructose from ab initio molecular dynamics simulations[J]. Journal of Physical Chemistry B,2012,116(35):10898-10904. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[15] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 576
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |