[1] LORENTZEN G. The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J]. International Journal of Refrigeration,1995,18(3):190-197.
[2] BHATTI M S. A critical look at R-744 and R-134a mobile air conditioning systems[A]. SAE Paper 970527,SAE Congress Proceeding[C]. 1997:117-141.
[3] 刘学武,覃旭松,杜永强,等. CO2/DME混合工质热泵循环性能分析及可燃性研究[J]. 制冷与空调,2015,29(2):136-140. LIU X W,TAN X S,DU Y Q,et al. Heat pump cycle performance analysis and flammability study of the CO2/DME mixture refrigerant [J]. Refrigeration and Air-conditioning,2015,29(2):136-140.
[4] JU H K,JIN M C,LEE I H,et al. Circulation concentration of CO2/propane mixtures and the effect of their charge on the cooling performance in an air-conditioning system[J]. International Journal of Refrigeration,2007,30(1):43-49.
[5] HE M G,LI T C,LIU Z G. Experimental study on the refrigerators with refrigerant dimethyl ether[J]. Journal of Xi'an Jiaotong University,2004,38(3):221-225.
[6] KOYAMA S, TAKATO N, KUWAHARA K, et al. Experimental study on the performance of a refrigerant mixture CO2/DME system[C]//Proceedings of 22nd International Congress of Refrigeration,Beijing,2007.
[7] 毕胜山,陈强,吴江涛. CO2/二甲醚混合制冷剂跨临界制冷循环性能分析[C]//中国工程热物理学会2008年工程热力学与能源利用学术会议,2008:1807-1810. BI S S,CHEN Q,WU J T. Performance analysis of CO2/DME refrigerant cross critical refrigeration cycle [C]//Conference on Engineering Thermodynamics and Energy Utilization in 2008 China Academy of Engineering Thermal Physics Society Academic. 2008:1807-1810.
[8] SARKAR J, BHATTACHARYYA S. Assessment of blends of CO2, with butane and isobutane as working fluids for heat pump applications[J]. International Journal of Thermal Sciences,2009,48(7):1460-1465.
[9] 张雪峰,吕昊,刘家利,等. 二甲醚特性及其在汽车上的应用[J]. 上海汽车,2008(9):12-14. ZHANG X F,LV H,LIU J L,et al. Characteristic of DME and its application in automobile [J]. Shanghai Automobile,2008(9): 12-14.
[10] 任挪颖,颜俊,钱伟,等. 自复叠制冷循环的研究状况[J]. 制冷与空调,2006,6(6):5-8. REN N Y,YAN J,QIAN W,et al. The research status of auto-cascade refrigeration system[J]. Refrigeration and Air-conditioning,2006,6(6):5-8.
[11] 芮胜军,张华,黄理浩. 自动复叠制冷系统压力特性[J]. 化工学报,2012,63(s2):176-180. RUI S J,ZHANG H,HUANG L H. Pressure characteristics of auto-cascade refrigeration system [J]. Journal of Chemical Industry and Engineering(China),2012,63(s2):176-180.
[12] KIM S G,KIM M S. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant[J]. International Journal of Refrigeration,2002,25(8):1093-1101.
[13] NASRUDDIN,ARDI Y,SYAKA D R B. Performa sistem autocascade dengan menggunakan karbondioksida sebagai refrigeran campuran[J]. Jurnal Rekayasa Proses,2013,10(10):17-23.
[14] ZHANG L, XU S,DU P, et al. Experimental and theoretical investigation on the performance of CO2/propane auto-cascade refrigerator with a fractionation heat exchanger[J]. Applied Thermal Engineering,2015,87(1):669-677.
[15] OSENBRÜCK A. Verfahren zur Kälteerzeugung bei Absorptions maschinen:DE 84084[P]. 1895.
[16] ALTENKIRCH E. Kompression skälte maschine mit Lösungskreislauf[J]. Kältetechnik,1950,2(10/11/12):251-259,279-284,310-315.
[17] GROLL E A. Current status of absorption/compression cycle technology[J]. ASHRAE Transaction,1997,103(1):361-374.
[18] BOER D,VALLES M,CORONAS A. Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs [J]. International Journal of Refrigeration,1998,21(7):542-555.
[19] ZHENG D X,MENG X L. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption-compression hybrid refrigeration cycle [J]. Energy Conversion and Management,2012,56(1):166-174
[20] HONG D L,TANG L M,HE Y J,et al. A novel absorption refrigeration cycle [J]. Applied Thermal Engineering,2010,30(14):2045-2050
[21] VENTAS R,LECUONA A,ZACARÍAS A,et al. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures[J].Applied Thermal Engineering,2010,30(11/12):1351-1359.
[22] BAO S Y,DU K,CAI X C,et al. Performance analysis of ammonia-water absorption/compression combined refrigeration cycle[J]. Journal of Southeast University(English Edition),2014,30(1):60-67.
[23] 王康,张娜,韩巍,等. 热功复合驱动热泵循环热力性能研究[J].工程热物理学报,2015,30(11):2327-2333. WANG K,ZHANG N,HAN W,et al. Performance study of an absorption/compression hybrid heat pump cycle [J].Journal of Engineering Thermophysics,2015,30(11):2327-2333.
[24] 何丽娟,郑霄龙,陈光明,等. 低品位热驱动新型压缩-吸收复合制冷循环性能的实验研究[J]. 太阳能学报,2013,34(7):1177-1183. HE L J,ZHENG X L,CHEN G M,et al. Experimental study on the performance of a new compression-absorption hybrid refrigeration system driven by low-grade energy[J]. Acta Energiae Solaris Sinica,2013,34(7):1177-1183.
[25] 王林,谈莹莹,梁坤峰,等. 太阳能-电能驱动复合制冷循环特性研究[J]. 工程热物理学报,2013,34(3):409-414. WANG L,TAN Y Y,LIANG K F,et al. Study on hybrid refrigeration cycle powered by combined electricity-solar energy [J]. Journal of Engineering Thermophysics,2013,34(3):409-414.
[26] AYALA R,HEARD C L,HOLLAND F A. Ammonia/lithium nitrate absorption/compression refrigeration cycle. Part II. Experimental[J]. Applied Thermal Engineering,1998,18(8):661-670.
[27] 曹毅然,张小松,鲍鹤灵. 太阳能驱动的压缩吸收式复合制冷循环分析[J]. 流体机械,2002,30(10):51-53. COA Y R,ZHANG X S,BAO H L. Analysis of new compressed and absorbered compound cycle driven by solar energy [J]. Fluid Machinery,2002,30(10):51-53.
[28] 李见波,徐士鸣,孔绍康. 吸收-压缩混合制冷循环的稳态特性分 析[J]. 化工学报,2012,63(s2):8-13. LI J B,XU S M,KONG S K. Steady state characteristics of absorption-compression hybrid refrigeration cycle[J]. Journal of Chemical Industry and Engineering(China),2012,63(s2):8-13.
[29] HONG D L,TANG L M,HE Y J,et al. A novel absorption refrigeration cycle[J]. Applied Thermal Engineering,2010,30(14):2045-2050.
[30] GROLL E A,RADERMACHER R. Vapor compression cycle with solution circuit and desorber/absorber heat exchange[J]. ASHRAE Transactions,1994,100(1):73-83.
[31] SPAUSCHUS H O,HENDERSON D R,SEETON C J,et al. Reduced pressure carbon dioxide cycle for vehicle climate control: progress since 1999[C]//SAE Technical Paper Series,2000-01-0577.
[32] MOZURKEWICH G,GREENFIELD M L,SCHNEIDER W F,et al. Simulated performance and cofluid dependence of a CO2-cofluid refrigeration cycle with wet compression[J]. International Journal of Refrigeration,2002,25(2):1123-1136.
[33] NIU Y M,CHEN J P,CHEN Z J,et al. Construction and testing of a wet-compression absorption carbon dioxide refrigeration system for vehicle air conditioner[J]. Applied Thermal Engineering,2007,27(1):31-36.
[34] GROLL E A. Modeling of absorption/compression cycles using working pair carbon dioxide/acetone[J]. ASHRAE Transaction,1997,103(1): 863-871.
[35] CROWHURST L,MAWDSLEV P R,PEREZ-ARLANDIS J M,et al. Solvent-solute interactions in ionic liquids[J]. Physical Chemistry Chemical Physics,2003,5(13):2790-2794.
[36] WUJEK S S,MCCREADY M J,MOZURKEWICH G,et al. Experimental and modeling improvements to a co-fluid cycle utilizing ionic liquids and carbon dioxide[C]//15th International Refrigeration and Air Conditioning Conference at Purdue,2014:14-17.
[37] MOZURKEWICH G,SIMONI L D,STADTHERR M A,et al. Performance implications of chemical absorption for the carbon-dioxide-cofluid refrigeration cycle[J]. International Journal of Refrigeration,2014,46(1):196-206.
[38] 武卫东,吴俊,王振,等. 新型离子液体-CO2吸收制冷工质对选择及吸收特性[J]. 制冷学报,2016,37(3):22-28 WU W D,WU J,WANG Z,et al. Selection of ionic liquids and absorption properties of ionic liquids-CO2 working pairs[J]. Journal of Refrigeration,2016,37(3):22-28
[39] MOTA-MARTINEZ M T,ALTHULUTH M,KROON M C,et al. Solubility of carbon dioxide in the low-viscosity ionic liquid 1-hexyl-3-methylimidazolium tetracyanoborate[J]. Fluid Phase Equilibria,2012,332:35-39.
[40] POURREZA-DJOURSHARI S,RADERMACHER R. Calculation of the performance of vapour compression heat pumps with solution circuits using the mixture R22-DEGDME[J]. International Journal of Refrigeration,1986,9(4):245-250. |