Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (05): 1658-1665.DOI: 10.16085/j.issn.1000-6613.2017.05.014
Previous Articles Next Articles
WANG Dongxu1, XIAO Xianbin2, LI Wenyan1
Received:
2016-10-09
Revised:
2016-10-19
Online:
2017-05-05
Published:
2017-05-05
王东旭1, 肖显斌2, 李文艳1
通讯作者:
肖显斌,副教授。
作者简介:
王东旭(1994-),男,硕士研究生,从事生物质能利用技术研究。E-mail:mack0902@163.com。
基金资助:
CLC Number:
WANG Dongxu, XIAO Xianbin, LI Wenyan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1658-1665.
王东旭, 肖显斌, 李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展, 2017, 36(05): 1658-1665.
[1] Chen G,Yao J,Liu J,et al. Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil[J]. Renewable Energy,2016,91:315-322. [2] 吴创之,周肇秋,阴秀丽,等. 我国生物质能源发展现状与思考[J]. 农业机械学报,2009,40(1):91-99. WU C Z,ZHOU Z Q,YIN X L,et al. Current status of biomass energy development in China[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(1):91-99. [3] Chan F L,Tanksale A. Review of recent developments in Ni-based catalysts for biomass gasification[J]. Renewable and Sustainable Energy Reviews,2014, 38:428-438. [4] 余阳阳,李洪亮,鲁志远,等. 稻壳快速热解制取生物质油的试验研究[J]. 化工进展,2016,35(7):2041-2045. YU Y Y,LI H L,LU Z Y,et al. Experimental study on the fast pyrolysis of the rice husk for bio-oil production[J]. Chemical Industry and Engineering Progress,2016,35(7):2041-2045. [5] Chattanathan S A,Adhikari S,Abdoulmoumine N. A review on current status of hydrogen production from bio-oil[J]. Renewable and Sustainable Energy Reviews,2012,16(5):2366-2372. [6] Hossain M A,Jewaratnam J,Ganesan P. Prospect of hydrogen production from oil palm biomass by thermochemical process——a review[J]. International Journal of Hydrogen Energy,2016,41(38):16637-16655. [7] 张雪辉,陈海生,豆斌林,等. 生物油制备,性质与应用的研究进展[J]. 化工进展,2011,30(11):2404-2416. ZHANG X H,CHEN H S,DOU B L,et al. Research progress in production,property and industrial application of bio-oil[J]. Chemical Industry and Engineering Progress,2011,30(11):2404-2416. [8] 邓文义,于伟超,苏亚欣,等. 生物质热解和气化制取富氢气体的研究现状[J]. 化工进展,2013,32(7):1534-1541. DENG W Y,YU W C,SU Y X,et al. A review of pyrolysis and gasification of biomass for production of hydrogen-rich gas[J]. Chemical Industry and Engineering Progress,2013,32(7):1534-1541. [9] Li S,Gong J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews,2014,43(21):7245-7256. [10] Zheng X,Yan C,Hu R,et al. Hydrogen from acetic acid as the model compound of biomass fast-pyralysis oil over Ni catalyst supported on ceria-zirconia[J]. International Journal of Hydrogen Energy,2012,37(17):12987-12993. [11] 安璐,董长青,杨勇平,等. 负载型镍基催化剂上乙酸蒸汽重整制氢反应研究[J]. 中国电机工程学报,2009,29(2):47-51. AN L,DONG C Q,YANG Y P,et al. Studies on steam reforming of acetic acid for hydrogen production over nickel-based catalyst[J]. Proceedings of the CSEE,2009,29(2):47-51. [12] Li Z,Hu X,Zhang L,et al. Steam reforming of acetic acid over Ni/ZrO2 catalysts:effects of nickel loading and particle size on product distribution and coke formation[J]. Applied Catalysis A:General,2012,417:281-289. [13] An L,Dong C,Yang Y,et al. The influence of Ni loading on coke formation in steam reforming of acetic acid[J]. Renewable Energy, 2011,36(3):930-935. [14] Trimm D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today,1999,49(1):3-10. [15] Wang D,Montane D,Chornet E. Catalytic steam reforming of biomass-derived oxygenate:acetic acid and hydroxyacetal dehyde[J]. Applied Catalysis A:General,1996,143(2):245-270. [16] Takanabe K,Aika K,Seshan K,et al. Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2[J]. Chemical Engineering Journal,2006,120(1):133-137. [17] Lippert S,Baumann W,Thomke K. Secondary reactions of the base-catalyzed aldol condensation of acetone[J]. Journal of Molecular Catalysis,1991,69(2):199-214. [18] Hu R,Yan C,Zheng X,et al. Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid[J]. International Journal of Hydrogen Energy,2013,38(14):6033-6038. [19] 刘吉,王东旭,肖显斌,等. 焙烧温度对 Ni/γ-Al2O3还原条件及催化甲苯水蒸气重整反应的影响[J]. 燃料化学学报,2014,42(10):1225-1232. LIU J,WANG D X,XIAO X B,et al. Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene[J]. Journal of Fuel Chemistry and Technology,2014,42(10):1225-1232. [20] Bimbela F,Oliva M,Ruiz J,et al. Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids[J]. Journal of Analytical and Applied Pyrolysis,2007,79(1):112-120. [21] Nogueira F G E,Assaf P G M,Carvalho H W P,et al. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Applied Catalysis B:Environmental,2014,160:188-199. [22] Vagia E C,Lemonidou A A. Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts[J]. Applied Catalysis A:General,2008,351(1):111-121. [23] Medrano J A,Oliva M,Ruiz J,et al. Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1):214-225. [24] Iwasa N,Yamane T,Arai M. Influence of alkali metal modification and reaction conditions on the catalytic activity and stability of Ni containing smectite-type material for steam reforming of acetic acid[J]. International Journal of Hydrogen Energy,2011,36(10):5904-5911. [25] 董长青,安璐,杨勇平,等. 助剂锂对乙酸蒸汽重整制氢反应积碳的影响[J]. 中国电机工程学报,2009,29(s1):168-173. DONG C Q,AN L,YANG Y P,et al. Effect of lithium promoters on carbon deposition in steam reforming of acetic acid for hydrogen production[J]. Proceedings of the CSEE,2009,29(s1):168-173. [26] 蓝平,许庆利,蓝丽红,等. 生物油模型物乙酸水蒸汽催化重整制氢研究[J]. 太阳能学报,2010,31(5):550-555. LAN P,XU Q L,LAN L H,et al. Sustainable hydrogen from bio-oil steam reforming of acetic acid as a model oxygenate[J]. Acta Energiae Solaris Sinica,2010,31(5):550-555. [27] Thaicharoensutcharittham S,Meeyoo V,Kitiyanan B,et al. Hydrogen production by steam reforming of acetic acid over Ni-based catalysts[J]. Catalysis Today,2011,164(1):257-261. [28] 王一双,陈明强,刘少敏,等. 负载NiO-Fe2O3的凹凸棒石对生物油模型物催化重整制氢性能的影响[J]. 燃料化学学报,2015,43(12):1470-1475. WANG Y S,CHEN M Q,LIU S M,et al. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3 loaded palygouskite[J]. Journal of Fuel Chemistry and Technology,2015,43(12):1470-1475. [29] 胡勋,张丽君,吕功煊. 镍-铁双金属催化剂在乙酸水蒸气重整制氢反应中的催化性能——铁的互补作用和甲烷及CO生成的反应路径[J]. 分子催化,2015(5):431-440. HU X,ZHANG L J,LV G X. Acetic acid steam reforming over Ni-Fe Catalyst:complementary roles of iron and reaction pathways of methane and CO[J]. Journal of Molecular Catalysis(China),2015(5):431-440. [30] 马重华,胡勋,吕功煊. 乙酸水蒸气重整制氢 Fe-Ni 催化剂的研究[J]. 石油化工,2010,39(12):1326-1331. MA C H,HU X,LV G X. Hydrogen production by catalytic steam reforming of acetic acid over Fe-Ni catalyst. Petrochemical technology[J]. Petrochemical Technology,2010,39(12):1326-1331. [31] 马重华,胡勋,吕功煊. Co-Ni/SiO2 催化剂催化乙酸重整制氢反应研究[J]. 分子催化,2008,2(4):308-314. MA C H,HU X,LV G X. Hydrogen production by catalytic steam reforming of acetic acid over Co-Ni/SiO2[J]. Journal of Molecular Catalysis(China),2008,2(4):308-314. [32] Assaf P G M,Nogueira F G E,Assaf E M. Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid:representative compound for the aqueous phase of bio-oil derived from biomass[J]. Catalysis Today,2013,213:2-8. [33] Pant K K,Mohanty P,Agarwal S,et al. Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts[J]. Catalysis Today,2013,207:36-43. [34] Hu X,Lu G. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. Journal of Molecular Catalysis A:Chemical,2007,261(1):43-48. [35] Bimbela F,Chen D,Ruiz J,et al. Ni/Al coprecipitated catalysts modified with magnesium and copper for the catalytic steam reforming of model compounds from biomass pyrolysis liquids[J]. Applied Catalysis B:Environmental,2012,119:1-12. [36] GOICOECHEA S,KRALEVA E,SOKOLOV S,et al. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Applied Catalysis A:General,2016,514:182-191. [37] Basagiannis A C,Verykios X E. Catalytic steam reforming of acetic acid for hydrogen production[J]. International Journal of Hydrogen Energy,2007,32(15):3343-3355. [38] Basagiannis A C,Verykios X E. Reforming reactions of acetic acid on nickel catalysts over a wide temperature range[J]. Applied Catalysis A:General,2006,308:182-193. [39] 薛亚平,赵效勇,阎常峰. 乙酸水蒸气重整制氢中载体组成对催化剂性能的影响[J]. 新能源进展,2016,4(3):213-218. XUE Y P,ZHAO X Y,YAN C F. Effects of support composition on hydrogen production through steam reforming of acetic acid[J]. Advances in New and Renewable Energy,2016,4(3):213-218. [40] 李元荣,李美薇,王玉和. 不同方法制备的MgO负载金属Ni催化水蒸汽重整乙酸制氢[J]. 化学工程师,2013,27(4):8-10. LI Y R,LI M W,WANG Y H. Steam reforming of acetic acid for producing hydrogen by metal Ni support on MgO prepared by different methods[J]. Chemical Engineer,2013,27(4):8-10. [41] WANG S,CAI Q,ZHANG F,et al. Hydrogen production via catalytic reforming of the bio-oil model compounds:acetic acid,phenol and hydroxyacetone[J]. International Journal of Hydrogen Energy,2014,39(32):8675-18687. [42] WANG S,ZHANG F,CAI Q,et al. Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts[J]. International Journal of Hydrogen Energy,2015,40(35):11406-11413. [43] 吕奇铮,徐起翔,张长森,等. Aspen Plus在生物质快速热解制取燃料油中的应用进展[J]. 化工进展,2016,35(s1):116-121. LV Q Z,XU Q X,ZHANG C S,et al. Application of Aspen Plus in thermal conversion of biomass into liquid fuels:a review[J]. Chemical Industry and Engineering Progress,2016,35(s1):116-121. [44] Vagia E C,Lemonidou A A. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction[J]. International Journal of Hydrogen Energy,2007,26(2):212-223. [45] Vagia E C,Lemonidou A A. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction[J]. International Journal of Hydrogen Energy,2008,27(10):2489-2500. [46] Li J,Yu H,Yang G,et al. Steam reforming of oxygenate fuels for hydrogen production:a thermodynamic study[J]. Energy & Fuels,2011,25(6):2643-2650. [47] Goicoechea S,Ehrich H,ARIAS P L,et al. Thermodynamic analysis of acetic acid steam reforming for hydrogen production[J]. Journal of Power Sources,2015,279:312-322. [48] 刘利平,王恒,方书起,等. Aspen Plus软件模拟生物油模化物水蒸气重整制氢热力学[J]. 计算机与应用化学,2016,33(3):330-334. LIU L P,WANG H,FANG S Q,et al. Thermodynamic study on steam reforming of bio-oil model compound for hydrogen production by Aspen Plus[J]. Computers and Applied Chemistry,2016,33(3):330-334. [49] Resende K A,Ávila-Neto C N,Rabelo-Neto R C,et al. Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction[J]. Renewable Energy,2015,80:166-176. [50] 安森萌,付鹏,易维明. 乙酸水蒸气重整制氢反应的热力学分析[J]. 太阳能学报,2013,34(9):1526-1530. AN S M,FU P,YI W M. Thermodynamic analysis of hydrogen production via steam reforming of acetic acid[J]. Acta Energiae Solaris Sinica,2013,34(9):1526-1530. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 942
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 463
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |