Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (09): 3323-3330.DOI: 10.16085/j.issn.1000-6613.2015.09.018
Previous Articles Next Articles
XIAO Zhuqian1,2,3, OUYANG Hongsheng1,2,3, GE Qiuwei1,2,3, WANG Zhenzhen1,2, ZHANG Jinjian1,2, JIANG Chengjun1,2, JI Jianbing3, MAO Jianwei1,2
Received:
2015-01-16
Revised:
2015-03-26
Online:
2015-09-05
Published:
2015-09-05
肖竹钱1,2,3, 欧阳洪生1,2,3, 葛秋伟1,2,3, 王珍珍1,2, 张金建1,2, 蒋成君1,2, 计建炳3, 毛建卫1,2
通讯作者:
毛建卫,教授级高级工程师。E-mail:zjhzmjw@163.com
作者简介:
肖竹钱(1990-),男,硕士研究生。E-mail:shaw1314@126.com
基金资助:
浙江省教育厅科研项目(Y20112088)及浙江省科技计划项目(2011R09028-10)。
CLC Number:
XIAO Zhuqian, OUYANG Hongsheng, GE Qiuwei, WANG Zhenzhen, ZHANG Jinjian, JIANG Chengjun, JI Jianbing, MAO Jianwei. Reaserch progress in bifunctional catalysts for cellulose to polyols[J]. Chemical Industry and Engineering Progree, 2015, 34(09): 3323-3330.
肖竹钱, 欧阳洪生, 葛秋伟, 王珍珍, 张金建, 蒋成君, 计建炳, 毛建卫. 双功能催化剂在纤维素制多元醇中的研究进展[J]. 化工进展, 2015, 34(09): 3323-3330.
[1] Weingarten R,Cao F,Luterbacher J S,et al. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents[J]. ChemCatChem,2014,6(8):2229-2234. [2] Ramli N A S,Amin N A S. Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production[J]. Fuel Processing Technology,2014,128:490-498. [3] Tao F R,Song H L,Chou L J. Catalytic conversion of cellulose to chemicals in ionic liquid[J]. Carbohydrates Research,2011,346(1):58-63. [4] Ding D Q,Wang J J,Xi J X,et al. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone[J]. Green Chemistry,2014,16(8):3846-3853. [5] 白净,张璐,方书起,等. 糖基生物质生产食品化工产品研究进展[J]. 化工进展,2015,34(1):212-218. [6] Gardebje S,Larsson A,Lofgren C,et al. Controlling water permeability of composite films of polylactide acid,cellulose,and xyloglucan[J]. Journal of Applied Polymer Science,2015,132(1):41219-41226. [7] Tao F R,Song H L,Yang J,et al. Catalytic hydrolysis of cellulose into furans in MnCl2-ionic liquid system[J]. Carbohydrate Polymers,2011,85(2):363-368. [8] Tao F R,Song H L,Chou L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids[J]. Bioresource Technology,2011,102:9000-9006. [9] Taherzadeh M J,Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials:A review[J]. Bioresources,2007,2(3):472-499. [10] Yan Y J,Jiang G H. Recent advances in catalytic conversion of cellulose into variable chemicals and bio-fuels[J]. Journal of Biobased Materials and Bioenergy,2014,8(6):553-569. [11] Kim S B,Lee Y Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment[J]. Bioresource Technology,2002,83(2):165-171. [12] Zhang H Y,Cheng Y T,Vispute T P,et al. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5:The hydrogen to carbon effective ratio[J]. Energy & Environmenatl Science,2009,4(6):2297-2307. [13] Robert R,Ferdi S. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science,2009,2:610-626. [14] Wang A Q,Zhang T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalyst[J]. Accounts of Chemical Research,2013,46(7):1377-1386. [15] Liu Y,Luo C,Liu H C. Tungsten trioxide selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte Chemie:International Edition,2012,51(13):3249-3253. [16] Ji N,Zhang T,Zheng M Y,et al. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts[J]. Catalysis Today,2009,147(2):77-85. [17] Ding L N,Wang A Q,Zheng M Y,et al. Selective transformation of cellulose into sorbitol by using a bifunctional nichkel phosphide catalyst[J]. ChemSusChem,2010,3(7):818-821. [18] Zhang J J,Lu F,Yu W Q,Chen J Z,et al. Selective hydrogenative cleavage of C-C bonds in sorbitol using Ni-Re/C catalyst under nitrogen atmosphere[J]. Catalysis Today,2014,234:107-112. [19] Vilcocq L,Cabiac A,Especel C,et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system[J]. Journal of Catalysis,320:16-25. [20] Kobayashi H,Ito Y,Komanoya T,et al. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts[J]. Green Chemistry,2011,13(2):326-333. [21] Kobayashi H,Yamakoshi Y,Fukuoka A,et al. Production of sugar alcohols from real biomass by supported platinum catalyst[J]. Catalysis Today,2014,226:204-209. [22] Gorp K V,Boerman E,Cavenaghi C V,et al. Catalytic hydrogenation of fine chemicals:Sorbitol production[J]. Catalysis Today,1999,52(2):349-361. [23] Luo C,Wang S,Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie:International Edition,2007,46(40):7636-7639. [24] Deng W P,Liu M,Tan X S,et al. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis,2010,271(1):22-32. [25] Deng W P,Wang Y L,Zhang Q H,et al. Development of bifunctional catalysts for the conversions of cellulose or cellobiose into polyols and organic acids in water[J]. Catalysis Surveys from Asia,2012,16(2):91-105. [26] Zhu W W,Yang H M,Chen J Z,et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry,2014,16(30):1534-1542. [27] Han J W,Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution[J]. Catalysis Communications,2012,19:115-118. [28] Onda A,Ochi K,Yanaqisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chemistry,2008,10:1033-1037. [29] Kobayashi H,Komanoya T,Fukuoka A,et al. Conversion of cellulose into renewable chemicals by supported metal catalysis[J]. Applied Catalysis A:General,2011,409-410:13-20. [30] Liu M,Deng W P,Zhang Q H,et al. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Commnication,2011,47(34):9717-9719. [31] Deng W P,Zhang Q H,Wang Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals[J]. Dalton Transactions,2012,41(33):9817-9831. [32] Palkovits R,Tajvidi K,Ruppertc A M,et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communication,2011,47(1):576-578. [33] Van de Vyver S,Thomas J,Geboers J,et al. Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s[J]. Energy & Environmental Science,2011,4(9):3601-3610. [34] Shimizu K I,Furukawa H,Kobayashi N,et al. Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemisrty,2009,11:1627-1632. [35] Deng W P,Liu M,Wang Y,et al. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures[J]. Chemical Communication,2010,46(15):2668-2670. [36] Deng W P,Zhu E Z,Wang Y,et al. Cs-substituted tungstophosphate-supported ruthenium nanoparticles as efficient and robust bifunctional catalysts for the conversion of inulin and cellulose into hexitols in water in the presence of H2[J]. RSC Advances,2014,81(4):43131-43141. [37] Chen J Z,Wang S P,Huang J,et al. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid[J]. ChemSusChem,2013,6(8):1545-1555. [38] Geboers J,Van de Vyver S,Carpentier K,et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communication,2010,46(20):3577-3579. [39] Fukuoka A,Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie:International Edition,2006,45(31):5161-5163. [40] Liang G F,Cheng H Y,Zhao F Y,et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry,2012,14:2146-2149. [41] Van de Vyver S,Geboers J,Dusselier M,et al. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofiber[J]. ChemSusChem,2010,3(6):698-701. [42] Wang X C,Meng L Q,Wu F,et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry,2012,14(3):758-765. [43] Sun J Y,Liu H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catalysis Today,2014,234:75-82. [44] Ding L N,Wang A Q,Zheng M Y,et al. Selective transformation of cellulose in to sorbitol by using a bifunctional nickel phosphide catalyst[J]. ChemSusChem,2010,3(7):818-821. [45] Negoi A,Triantafyllidis K,Parvulescu V I,et al. The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru,Ir,Pd,Rh)-BEA-zeolite catalysts[J]. Catalysis Today,2014,223:122-128. [46] Deng W P,Tan X S,Wang Y,et al. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst[J]. Catalsis Letters,2009,133(1-2):167-174. [47] Wang H J,Zhu L L,Yang J,et al. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy,2012,37(1):192-196. [48] Yan N,Zhao C,Luo C,et al. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. Journal of the American Chemical Society,2006,128(27):8714-8715. [49] Sun R Y,Wang T T,Zhang T,et al. Versatile nickel-lanthanum (Ⅲ) catalyst for direct conversion of cellulose to glycols[J]. ACS Catalysis,2015,5(2):874-883. [50] Zhang Y H,Wang A Q,Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communication,2010,46(6):862-864. [51] Geboers J,Van de Vyver S,Carpentier K,et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Catalysis Communication,2011,47(19):5590-5592. [52] Ji N,Zhang T,Zheng M Y,et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie:International Edition,2008,47:8510-8513. [53] Zheng M Y,Wang A Q,Ji N,et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem,2010,3(1):63-66. [54] Li C Z,Zheng M Y,Wang A Q,et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:Simultaneous conversion of cellulose,hemicellulose and lignin[J]. Energy & Environmental Science,2012,5(4):6383-6390. [55] Zhao G H,Zheng M Y,Wang A Q,et al. Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J]. Chinese Journal of Catalysis,2010,31(8):928-932. [56] Zheng M Y,Pang J F,Wang A Q,et al. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals:From fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis,2014,35(5):602-613. [57] Cao Y L,Wang J W,Kang M Q,et al. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Molecular Catalysis A:Chemical,2014,381:46-53. [58] Baek I G,You S J,Park E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresource Technology,2012,114:684-690. [59] Zhao J Y,Hou B L,Wang A Q,et al. Kinetic study of Retro-Aldol condensation of glucose glycolaldehyde with ammonium metatungstate as the catalyst[J]. American Institute of Chemical Engineers,2014,60(11):3804-3813. [60] Kourieh R,Bennici S,Marzo M,et al. Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose[J]. Catalysis Communications,2012,19:119-126. [61] Levy R B,Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science,1973,181:547-549. [62] Zhang J Y,Hou B L,Wang A Q,et al. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. American Institute of Chemical Engineers,2015,61:224-238. [63] Ji N,Zheng M Y,Wang A Q,et al. Nickel-promoted tungsten carbide catalysts for cellulose conversion:Effect of preparation methods[J]. ChemSusChem,2012,5(5):939-944. [64] Zhou L K,Pang J F,Wang A Q,et al. Catalytic converion of jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni[J]. Chinese Journal of Catalysis,2013,34(11):2041-2046. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[3] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[4] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[5] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[6] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[7] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[8] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[9] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[10] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[13] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[14] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[15] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1043
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |