Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 2046-2055.DOI: 10.16085/j.issn.1000-6613.2018-0740
• Resources and environmental engineering • Previous Articles Next Articles
Haizhou LIN1,2(),Haizhong LUO1,Aiguo PEI1,Mengxiang FANG2()
Received:
2018-04-11
Revised:
2018-05-30
Online:
2019-04-05
Published:
2019-04-05
Contact:
Mengxiang FANG
通讯作者:
方梦祥
作者简介:
<named-content content-type="corresp-name">林海周</named-content>(1989—),男,博士后,研究方向为燃煤电厂烟气二氧化碳捕集。E-mail:<email>linhaizhou@gedi.com.cn</email>。|方梦祥,教授,博士生导师,研究方向为煤及生物质燃烧和气化技术、CO2控制技术。E-mail:<email>mxfang@zju.edu.cn</email>。
基金资助:
CLC Number:
Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055.
林海周, 罗海中, 裴爱国, 方梦祥. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(04): 2046-2055.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0740
序号 | 方程 | 指前因子 | 活化能 /J·mol?1 |
---|---|---|---|
平衡反应 | |||
(1) | 2H2OH3O++OH? | — | — |
(2) | HCO3 ? + H2OCO3 2?+H3O+ | — | — |
(3) | PZH+ + H2OPZ+H3O+ | — | — |
(4) | H2O + H+PZCOO?H3O++PZCOO? | — | — |
(5) | MDEAH+ + H2OMDEA+H3O+ | — | — |
动力学反应 | |||
(6) | CO2 + OH?HCO3 ? | 1.33×1017 | 55458.99 |
(7) | HCO3 ?CO2 + OH? | 6.63×1016 | 107393.5 |
(8) | PZ + CO2 + H2OPZCOO?+H3O+ | 1.70×1010 | 1335.302 |
(9) | PZCOO? + H3O+PZ+CO2+H2O | 3.40×1023 | 59272.34 |
(10) | PZCOO? + CO2 + H2OPZ(COO)2 2? + H3O+ | 1.04×1014 | 33647.52 |
(11) | PZ(COO)2 2? + H3O+PZCOO?+CO2+H2O | 3.20×1020 | 36383.84 |
(12) | MDEA + CO2 + H2OMDEAH++HCO3 ? | 6.85×1010 | 37794.49 |
(13) | MDEAH+ + HCO3 ?MDEA+CO2+H2O | 6.62×1017 | 92638.15 |
序号 | 方程 | 指前因子 | 活化能 /J·mol?1 |
---|---|---|---|
平衡反应 | |||
(1) | 2H2OH3O++OH? | — | — |
(2) | HCO3 ? + H2OCO3 2?+H3O+ | — | — |
(3) | PZH+ + H2OPZ+H3O+ | — | — |
(4) | H2O + H+PZCOO?H3O++PZCOO? | — | — |
(5) | MDEAH+ + H2OMDEA+H3O+ | — | — |
动力学反应 | |||
(6) | CO2 + OH?HCO3 ? | 1.33×1017 | 55458.99 |
(7) | HCO3 ?CO2 + OH? | 6.63×1016 | 107393.5 |
(8) | PZ + CO2 + H2OPZCOO?+H3O+ | 1.70×1010 | 1335.302 |
(9) | PZCOO? + H3O+PZ+CO2+H2O | 3.40×1023 | 59272.34 |
(10) | PZCOO? + CO2 + H2OPZ(COO)2 2? + H3O+ | 1.04×1014 | 33647.52 |
(11) | PZ(COO)2 2? + H3O+PZCOO?+CO2+H2O | 3.20×1020 | 36383.84 |
(12) | MDEA + CO2 + H2OMDEAH++HCO3 ? | 6.85×1010 | 37794.49 |
(13) | MDEAH+ + HCO3 ?MDEA+CO2+H2O | 6.62×1017 | 92638.15 |
设备 | 直径/m | 塔高/m | 级数 | 填料 | 操作压力/atm |
---|---|---|---|---|---|
吸收塔 | 16 | 25 | 20 | Mellapak 250Y | 1.0 |
解吸塔 | 10 | 8 | 20 | Mellapak 250Y | 2.0 |
设备 | 直径/m | 塔高/m | 级数 | 填料 | 操作压力/atm |
---|---|---|---|---|---|
吸收塔 | 16 | 25 | 20 | Mellapak 250Y | 1.0 |
解吸塔 | 10 | 8 | 20 | Mellapak 250Y | 2.0 |
1 | 中国电力企业联合会 . 中国煤电清洁发展报告[EB/OL]. [2017-09-22]. . |
The China Electricity Council . The development of Chinese coal cleaning report [EB/OL]. [2017-09-22]. . | |
2 | 英国石油公司 . BP世界能源统计年鉴[EB/OL]. [2017-06-12]. . |
BP . BP statistical review of world energy [EB/OL]. [2017-06-12]. . | |
3 | 国家发展与改革委员会 . 全国碳排放权交易市场建设方案(发电行业)[EB/OL]. [2017-12-18]. |
The National Development and Reform Commission (NDRC) . The national carbon emissions trading market construction scheme (power generation industry) [EB/OL]. [2017-12-18]. . | |
4 | RUBIN E S , MANTRIPRAGADA H , MARKS A , et al . The outlook for improved carbon capture technology [J]. Progress in Energy and Combustion Scienc, 2012, 38(5): 630-671. |
5 | ROCHELLE G T . Amine scrubbing for CO2 capture [J]. Science, 2009, 325(5948): 1652-1654. |
6 | IDEM R , SUPAP T , SHI H , et al . Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants[J]. International Journal of Greenhouse Gas Control, 2015, 40: 6-25. |
7 | LIANG Zhiwu , FU Kaiyun , IDEM R , et al . Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering 2016, 24(2): 278-288. |
8 | LI Kangkang , LEIGH W , FERON P , et al . Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165: 648-659. |
9 | 方梦祥, 周旭萍, 王涛, 等 . CO2化学吸收剂[J]. 化学进展, 2015, 27(12): 1808-1814. |
FANG Mengxiang , ZHOU Xuping , WANG Tao , et al . Solvent development in CO2 chemical absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814. | |
10 | 陈健, 罗伟亮, 李晗 . 有机胺吸收二氧化碳的热力学和动力学研究进展[J]. 化工学报, 2014, 65(1): 12-21. |
CHEN Jian , LUO Weiliang , LI Han . A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines[J]. CIESC Journal, 2014, 65(1): 12-21. | |
11 | CLOSMANN F , NGUYEN T , ROCHELLE G T . MDEA/piperazine as a solvent for CO2 capture[J]. Energy Procedia, 2009, 1(1): 1351-1357. |
12 | FRAILIE P T . Modeling of carbon dioxide absorption/stripping by aqueous methyldiethanolamine/piperazine[D]. Austin: The University of Texas at Austin, 2014. |
13 | SVENSSON H , HULTEBERG C , KARLSSON H T . Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine[J]. International Journal of Greenhouse Gas Control, 2013, 17: 89-98. |
14 | KHAN A A , HALDER G N , SAHA A K . Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column [J]. International Journal of Greenhouse Gas Control, 2017, 64(s): 163-173. |
15 | HUANG Jicai , GONG Maoqiong , DONG Xueqiang , et al . CO2 solubility in aqueous solutions of N-methyldiethanolamine plus piperazine by electrolyte NRTL model[J]. Science China-Chemistry, 2016, 59(3): 360-369. |
16 | MOIOLI S , PELLEGRINI L A . Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: thermodynamic analysis [J]. Frontiers of Chemical Science and Engineering, 2016, 10(1): 162-175. |
17 | SAMANTA A , BANDYOPADHYAY S S . Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine[J]. Chemical Engineering Journal, 2011, 171(3): 734-741. |
18 | SAIDI M . Rate-based modeling of CO2 absorption into piperazine-activated aqueous N-methyldiethanolamine solution: kinetic and mass transfer analysis[J]. International Journal of Chemical Kinetics, 2017, 49(9): 690-708. |
19 | TOBIESEN F A , SVENDSEN H F , MEJDELL T . Modeling of blast furnace CO2 capture using amine absorbents[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7811-7819. |
20 | MUDHASAKUL S , KU H M, DOUGLAS P L . A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator[J]. International Journal of Greenhouse Gas Control, 2013, 15(s): 134-141. |
21 | ZHAO Bin , LIU Fangzheng , CUI Zheng , et al . Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: process improvement[J]. Applied Energy, 2017, 185: 362-375. |
22 | DUBOIS L , THOMAS D . Comparison of various configurations of the absorption-regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases[J]. International Journal of Greenhouse Gas Control, 2018, 69: 20-35. |
23 | 李晗, 陈健 . 单乙醇胺吸收CO2的热力学模型和过程模拟[J]. 化工学报, 2014, 65(1): 47-54. |
LI Han , CHEN Jian . Thermodynamic modeling and process simulation for CO2 absorption into aqueous monoethanolamine solution [J]. CIESC Journal, 2014, 65(1): 47-54. | |
24 | 张克舫, 刘中良, 王远亚, 等 . 化学吸收法CO2捕集解吸能耗的分析计算[J]. 化工进展, 2013, 32(12): 3008-3014. |
ZHANG Kefang , LIU Zhongliang , WANG Yuanya , et al . Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method[J]. Chemical Industry and Engineering Progress, 2013, 32(12): 3008-3014. | |
25 | 张亚萍, 刘建周, 季芹芹, 等 . 醇胺法捕集燃煤烟气CO2工艺模拟及优化[J]. 化工进展, 2013, 32(4): 930-935. |
ZHANG Yaping , LIU Jianzhou , JI Qinqin , et al . Process simulation and optimization of flue gas CO2 capture by the alkanolamine solutions [J]. Chemical Industry and Engineering Progress, 2013, 32(4): 930-935. | |
26 | WANG Tao , HE Hui , YU Wei , et al . Process simulations of CO2 desorption in the interaction between the novel direct steam stripping process and solvents[J]. Energy & Fuels, 2017, 31(4): 4255-4262. |
27 | Aspen Technology Inc . ENRTL-RK rate-based model of the CO2 capture process by mixed PZ and MDEA using Aspen plus[EB/OL]. [2018-02-10]. . |
28 | DAMARTZIS T , PAPADOPOULOS A I , SEFERLIS P . Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants[J]. Journal of Cleaner Production, 2016, 111: 204-216. |
29 | BEK-PEDERSEN E , GANI R . Design and synthesis of distillation systems using a driving-force-based approach[J]. Chemical Engineering & Processing Process Intensification, 2004, 43(3): 251-262. |
30 | REZAZADEH F , GALE W F , LIN Y J , et al . Energy performance of advanced reboiled and flash stripper configurations for CO2 capture using monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4622-4631. |
31 | LI Kangkang , COUSINS A , YU Hai , et al . Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement[J]. Energy Science & Engineering, 2016, 4(1): 23-39. |
32 | FAN Zhen , LIU Kun , QI Guojie , et al . Aspen modeling for MEA-CO2 loop: dynamic gridding for accurate column profile [J]. International Journal of Greenhouse Gas Control, 2015, 37: 318-324. |
33 | YING Jiru , RAETS S , EIMER D . The activator mechanism of piperazine in aqueous methyldiethanolamine solutions[J]. Energy Procedia, 2017, 114: 2078-2087. |
34 | ZHANG W , CHEN J , LUO X , et al . Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine[J]. International Journal of Greenhouse Gas Control, 2017, 63: 37-46. |
35 | KHALILPOUR R . Flexible operation scheduling of a power plant integrated with PCC processes under market dynamics[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8132-8146. |
[1] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[2] | ZHENG Chengqiang, LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, YANG Linjun. Research progress on migration and transformation characteristics of escaped ammonia in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 964-973. |
[3] | GAO Libing, LYU Zhongyuan, SUO Hansheng, LIU Xiaoyu. Market analysis and development trend of petrochemical process simulation software [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 1-14. |
[4] | YU Yang, ZHOU Xin, CHENG Junfeng, DONG Changqing, WANG Yushan, LIU Yinghua. Research progress in detection methods, emission natures and removal technologies of condensable particulate matter from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4515-4524. |
[5] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
[6] | LI Chunli, CHENG Yonghui, LI Hao. Simulation of high pure alcohol preparation by distillation-adsorption-membrane separation coupling process [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1354-1361. |
[7] | Hongxing WANG, Haiyong LI, Qing ZHOU, Lu ZHANG. New energy-saving process for ethyl methyl carbonate preparation by reactive distillation in the dividing-wall column [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 66-72. |
[8] | Yingli YU, Xuchen FU, Yingying DAI, Jun RONG, Zhengping GAO, Bin CAI, Junhu HU. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. |
[9] | Weijing YU, Chao MA, Wenbin TAN, Lei CUI, Yubin CHEN, Changhao LI. Research progress of white plume control in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 232-241. |
[10] | Shuanshi FAN, Jingren ZHOU, Luling LI, Na WEI, Haitao LI. Simulation and analysis of CO2/N2 separation process by equilibrium stage hydrate-based gas separation method [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3600-3607. |
[11] | Pengkun GUO, Pan LI, Chun CHANG, Guizhuan XU, Xiaohua SHI, Jing BAI, Shuqi FANG. Advances in the application of computer simulation technology in biomass conversion [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. |
[12] | Fei SHI, Yifan LI. Advances of mixed matrix membrane for CO2 capture [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
[13] | Chaoying SUN, Yingjie LI, Xianyao YAN, Jianli ZHAO. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743. |
[14] | Hanke LI, Chengxiong DANG, Guangxing YANG, Yonghai CAO, Hongjuan WANG, Feng PENG, Hao YU. Process intensification techniques towards carbon dioxide capture: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. |
[15] | Peng FENG, Zhenghong LI, Hexin LIU, Houzhang TAN, Sicong ZHANG, Xuchao LU, Fuxin YANG. Migration and removal characteristics of SO3 in ultra-low emission coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4660-4667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |