[1] ZHENG J,YANG R,SHI M,et al. Rationally designed molecular beacons for bioanalytical and biomedical applications[J]. Chemical Society Reviews,2015,44(10):3036-3055.
[2] PRICE R R,GABER B P,LVOV Y. In-vitro release characteristics of tetracycline HCl,khellin and nicotinamide adenine dineculeotide from halloysite;a cylindrical mineral[J]. Journal of Microencapsulation,2001,18(6):713-722.
[3] KOMMIREDDY D S,ICHINOSE I,LVOV Y M,et al. Nanoparticle multilayers:surface modification for cell attachment and growth[J]. Journal of Biomedical Nanotechnology,2005,1(3):286-290.
[4] SHAMSI M H,GECKELER K E. The first biopolymer-wrapped non-carbon nanotubes[J]. Nanotechnology,2008,19(7):075604.
[5] RAWTANI D,AGRAWAL Y,PRAJAPATI P. Interaction behavior of DNA with halloysite nanotube silver nanoparticle-based composite[J]. BioNanoScience,2013,3(1):73-78.
[6] VERGARO V,LVOV Y M,LEPORATTI S. Halloysite clay nanotubes for resveratrol delivery to cancer cells[J]. Macromolecular Bioscience,2012,12(9):1265-1271.
[7] LAI X,AGARWAL M,LVOV Y M,et al. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture[J]. Journal of Applied Toxicology,2013,33(11):1316-1329.
[8] BATES T F,HILDEBRAND F A,SWINEFORD A. Morphology and structure of endellite and halloysite[J]. American Mineralogist,1950,35(7-8):463-484.
[9] GUGGENHEIM S,EGGLETON R A. Crystal chemistry,classification,and identification of modulated layer silicates[J]. Reviews in Mineralogy and Geochemistry,1988,19(1):675-725.
[10] JOUSSEIN E,PETIT S,CHURCHMAN J,et al. Halloysite clay minerals:a review[J]. Clay Minerals,2005,40(4):383-426.
[11] LVOV Y,ABDULLAYEV E. Functional polymer-clay nanotube composites with sustained release of chemical agents[J]. Progress in Polymer Science,2013,38(10-11):1690-1719.
[12] YUAN P,SOUTHON P D,LIU Z,et al. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane[J]. The Journal of Physical Chemistry C,2008,112(40):15742-15751.
[13] SHCHUKIN D G,LAMAKA S,YASAKAU K,et al. Active anticorrosion coatings with halloysite nanocontainers[J]. The Journal of Physical Chemistry C,2008,112(4):958-964.
[14] GUIMARAES L,ENYASHIN A N,SEIFERT G,et al. Structural,electronic,and mechanical properties of single-walled halloysite nanotube models[J]. The Journal of Physical Chemistry C,2010,114(26):11358-11363.
[15] WHITE R D,BAVYKIN D V,WALSH F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions[J]. Nanotechnology,2012,23(6):065705.
[16] SHELDON R A,VAN P S. Enzyme immobilisation in biocatalysis:why,what and how[J]. Chemical Society Reviews,2013,42(15):6223-6235.
[17] MARTINEZGALLEGOS S,BULBULIAN S. Effects of γ radiation on chromate immobilization by calcined hydrotalcites[J]. Clays & Clay Minerals,2004,52(5):650-656.
[18] CORMA A,FORNES V,REY F. Delaminated zeolites:an efficient support for enzymes[J]. Adv. Mater.,2002,14(1):71-74.
[19] 黄磊,程振民. 无机材料在酶固定化中的应用[J]. 化工进展,2006,25(11):1245-1250. HUANG Lei,CHENG Zhenmin. Application of inorganic materials in enzyme immobilization[J]. Chemical Industry and Engineering Progress,2006,25(11):1245-1250.
[20] XIAO Q G,TAO X,CHEN J F. Silica nanotubes based on needle-like calcium carbonate:fabrication and immobilization for glucose oxidase[J]. Industrial & Engineering Chemistry Research,2007,46(2):459-463.
[21] ABDULLAYEV E,LVOV Y. Halloysite clay nanotubes for controlled release of protective agents[J]. Journal of Nanoscience and Nanotechnology,2011,11(11):10007-10026
[22] 马智,王金叶,高祥,等. 埃洛石纳米管的应用研究现状[J]. 化学进展,2012,24(s1):275-283. MA Zhi,WANG Jinye,GAO Xiang,et al.Aplication of halloysite nanotubes[J]. Progress In Chemistry,2012,24(s1):275-283.
[23] LVOV Y M,PRICE R R. Halloysite nanotubules,a novel substrate for the controlled delivery of bioactive molecules[M]//Bio-inorganic hybrid nanomaterials:strategies,syntheses,characterization and applications. New York:Wiley-VCH,2008:419-441.
[24] LVOV Y,PRICE R,GABER B,et al. Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite,spherical silica,proteins and polycations[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects,2002,198(4):375-382.
[25] ZHAI R,ZHANG B,LIU L,et al. Immobilization of enzyme biocatalyst on natural halloysite nanotubes[J]. Catalysis Communications,2010,12(4):259-263.
[26] ABDULLAYEV E,LVOV Y. Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release[J]. Journal of Materials Chemistry B,2013,1(23):2894-2903.
[27] ZHAI R,ZHANG B,WAN Y,et al. Chitosan-halloysite hybrid-nanotubes:horseradish peroxidase immobilization and applications in phenol removal[J]. Chemical Engineering Journal,2013,214:304-309.
[28] CHAO C,LIU J,WANG J,et al. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization[J]. ACS Applied Materials & Interfaces,2013,5(21):10559-10564.
[29] TULLY J,YENDLURI R,LVOV Y. Clay nanotubes for enzyme immobilization[J]. Biomacromolecules,2016,17(2):615-621.
[30] SHCHUKIN D G,SUKHORUKOV G B,PRICE R R,et al. Halloysite nanotubes as biomimetic nanoreactors[J]. Small,2005,1(5):510-513.
[31] TIERRABLANCA E,ROMERO-GARC A J,ROMAN P,et al. Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes[J]. Applied Catalysis A:General,2010,381(1):267-273.
[32] BÜNZLI J-C G. Lanthanide luminescence for biomedical analyses and imaging[J]. Chemical Reviews,2010,110(5):2729-2755.
[33] ZHOU T,JIA L,LUO Y-F,et al. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging[J]. International Journal of Nanomedicine,2016,11:4765.
[34] LIU H Y,DU L,ZHAO Y T,et al. In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application[J]. Journal of Nanomaterials,2015,16(1):384.
[35] SOLOPERTO G,CONVERSANO F,GRECO A,et al. Multiparametric evaluation of the acoustic behavior of halloysite nanotubes for medical echographic image enhancement[J]. IEEE Transactions on Instrumentation & Measurement,2014,63(6):1423-1430.
[36] SOLOPERTO G,CONVERSANO F,GRECO A,et al. Assessment of the enhancement potential of halloysite nanotubes for echographic imaging[C]//Medical Measurements and Applications Proceedings (MeMeA),2013 IEEE International Symposium on. IEEE,2013:30-34.
[37] CASCIARO S,SOLOPERTO G,CONVERSANO F,et al. Automatic image detection of halloysite clay nanotubes as a future ultrasound theranostic agent for tumoral cell targeting and treatment[C]//2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)Proceedings. IEEE,2014:927-930.
[38] VERGARO V,ABDULLAYEV E,LVOV Y M,et al. Cytocompatibility and uptake of halloysite clay nanotubes[J]. Biomacromolecules,2010,11(3):820-826.
[39] JIA L,ZHOU T,XU J,et al. Visible light-induced lanthanide polymer nanocomposites based on clays for bioimaging applications[J]. Journal of Materials Science,2016,51(3):1324-1332.
[40] GAHARWAR A K,PEPPAS N A,KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applications[J]. Biotechnology and Bioengineering,2014,111(3):441-453.
[41] SONG F,LI X,WANG Q,et al. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering[J]. Journal of Biomedical Nanotechnology,2015,11(1):40-52.
[42] BIONDI M,UNGARO F,QUAGLIA F,et al. Controlled drug delivery in tissue engineering[J]. Advanced Drug Delivery Reviews,2008,60(2):229-242.
[43] 伍巍,吴鹏君,何丁,等. 埃洛石纳米管在高分子纳米复合材料中的应用进展[J]. 化工进展,2011,30(12):2647-2651. WU Wei,WU Pengjun,HE Ding,et al. Application progress of halloysite nanotube in polymer nanocomposites[J]. Chemical Industry and Engineering Progress,2011,30(12):2647-2651.
[44] DAWSON J I,OREFFO R O. Clay:new opportunities for tissue regeneration and biomaterial design[J]. Advanced Materials,2013,25(30):4069-4086.
[45] CAI N,DAI Q,WANG Z,et al. Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes[J]. Journal of Materials Science,2014,50(3):1435-1445.
[46] BOTTINO M C,YASSEN G H,PLATT J A,et al. A novel three-dimensional scaffold for regenerative endodontics:materials and biological characterizations[J]. Journal of Tissue Engineering and Regenerative Medicine,2015,9(11):116-123.
[47] ZHAO Y,WANG S,GUO Q,et al. Hemocompatibility of electrospun halloysite nanotube-and carbon nanotube-doped composite poly (lactic-co-glycolic acid) nanofibers[J]. Journal of Applied Polymer Science,2013,127(6):4825-4832.
[48] NITYA G,NAIR G T,MONY U,et al. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering[J]. Journal of Materials Science:Materials in Medicine,2012,23(7):1749-1761.
[49] LIU M,WU C,JIAO Y,et al. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering[J]. Journal of Materials Chemistry B,2013,1(15):2078-2089.
[50] KONNOVA S A,SHARIPOVA I R,DEMINA T A,et al. Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes[J]. Chemical Communications,2013,49(39):4208-4210.
[51] VEERABADRAN N G,PRICE R R,LVOV Y M. Clay nanotubes for encapsulation and sustained release of drugs[J]. Nano,2007,2(02):115-120.
[52] NAUMENKO E A,DZAMUKOVA M R,FAKHRULLINA G I,et al. Nano-labelled cells——a functional tool in biomedical applications[J]. Current Opinion in Pharmacology,2014,18:84-90.
[53] KONNOVA S,LVOV Y,FAKHRULLIN R. Magnetic halloysite nanotubes for yeast cell surface engineering[J]. Clay Minerals,2016,51(3):429-433.
[54] KAMBLE R,GHAG M,GAIKAWAD S,et al. Halloysite nanotubes and applications:a review[J]. Journal of Advanced Scientific Research,2012,3(2):25-29.
[55] HUGHES A D,KING M R. Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(14):12155-12164.
[56] MITCHELL M J,CASTELLANOS C A,KING M R. Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies[J]. Journal of Biomedical Materials Research Part A,2015,103(10):3407-3418.
[57] MILLS D. Biocompatibility of halloysite clay nanotubes in a rat dermal model(87.4)[J]. The FASEB Journal,2014,28(s1):87.
[58] DZAMUKOVA M R,NAUMENKO E A,LVOV Y M,et al. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation[J]. Scientific Reports,2015,5:10560.
[59] LIU M,CHANG Y,YANG J,et al. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy[J]. Journal of Materials Chemistry B,2016,4(13):2253-2263.
[60] PECOT C V,CALIN G A,COLEMAN R L,et al. RNA interference in the clinic:challenges and future directions[J]. Nature Reviews Cancer,2011,11(1):59-67.
[61] WU H,SHI Y,HUANG C,et al. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing[J]. Journal of Biomaterials Applications,2014,28(8):1180-1189.
[62] SHI Y F,TIAN Z,ZHANG Y,et al. Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides[J]. Nanoscale Research Letters,2011,6(1):1-7.
[63] LIU M,SHEN Y,AO P,et al. The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes[J]. RSC Advances,2014,4(45):23540-23553.
[64] WEI W,ABDULLAYEV E,HOLLISTER A,et al. Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release[J]. Macromolecular Materials and Engineering,2012,297(7):645-653.
[65] SUH Y J,CHO K. Immobilization of nanoscale sunscreening agents onto natural halloysite micropowder[J]. Materials Transactions,2015,56(6):899-904. |