[1] 托马斯B雷迪. 电池手册[M]. 王继强,刘兴江,等,译. 4版. 北京:化学工业出版,2013:739-740. THOMAS B R. Linden's handbook of battery[M]. WANG J Q,LIU X J,et al,trans. 4th ed. Beijing:Chemical Industry Press,2013:739-740.
[2] THACKERAY M M,WOLVERTON C,ISAACS E D. Electrical energy storage for transportation——approaching the limits of,and going beyond,lithium-ion batteries[J]. Energy & Environmental Science,2012,5(7):7854-7863.
[3] YAO Y F Y,KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry,1967,29(9):2453-2475.
[4] WEBER N,KUMMER J T. Sodium-sulfur secondary battery[C]. Annual Power Sources Conference,1967,21:37-39.
[5] HAL H. The battery revolution that will let us all be power brokers[N]. British New Scientist,2015-07-27.
[6] VAN N R. The rechargeable revolution:a better battery[J]. Nature,2014,507(7490):26-28.
[7] NOH H J,YOUN S,YOON C S,et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3,0.5,0.6,0.7,0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources,2013,233:121-130.
[8] 岳鹏,张学全,陈彦彬. 锂离子电池用层状高镍正极材料的研究进展[J]. 广东化工,2016,43(15):117-118. YUE P,ZHANG X Q,CHEN Y B. Research progress of layered nickel-rich cathode materials for lithium ion batteries[J]. Guangdong Chemical Industry,2016,43(15):117-118.
[9] SIVAPRAKASH S,MAJUMDER S B. Understanding the role of Zr 4+ cation in improving the cycleability of LiNi0.8Co0.15Zr0.05O2 cathodes for Li ion rechargeable batteries[J]. Journal of Alloys and Compounds,2009,479(1):561-568.
[10] XIE H B,DU K,HU G R,et al. The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors[J]. The Journal of Physical Chemistry C,2016,120(6):3235-3241.
[11] LEE M J,NOH M,PARK M H,et al. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures[J]. Journal of Materials Chemistry A,2015,3:13453-13460.
[12] SUN Y K,CHEN Z,NOH H J,et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials,2012,11(11):942-947.
[13] LIN F,NORDLUND D,LI Y,et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy,2016,1:15004.
[14] 李杨,连芳,周国治. 应用于锂离子电池的无机晶态固体电解质导电性能研究进展[J]. 硅酸盐学报,2013,27(7):950-958. LI Y,LIAN F,ZHOU G Z. Conductive performance of inorganic crystalline solid electrolytes used in lithium ion batteries——a short review[J]. Journal of the Chinese Ceramic Society,2013,27(7):950-958.
[15] HU Y S. Batteries:getting solid[J]. Nature Energy,2016,1:16042.
[16] 黄祯,杨菁,陈晓添,等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术,2015(1):1-18. HUANG Z,YANG J,CHEN X T,et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology,2015(1):1-18.
[17] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nature Materials,2011,10(9):682-686.
[18] KATO Y,HORI S,SAITO T,et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy,2016,1:16030.
[19] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24.
[20] 牛津,张苏,牛越,等. 硅基锂离子电池负极材料[J]. 化学进展,2015,27(9):1275-1290. NIU J,ZHANG S,NIU Y,et al. Silicon-based anode materials foe lithium-ion batteries[J]. Progress in Chemistry,2015,27(9):1275-1290.
[21] 陈瑶,吕豪杰,石先兴. 硅负极的应用技术研究进展[J]. 电源技术,2016,40(3):736-739. CHEN Y,LV H J,SHI X X. Progress of application of silicon anodes[J]. Chinese Journal of Power Sources,2016,40(3):736-739.
[22] 周丹,梁风,姚耀春. 锂离子电池电解液负极成膜添加剂的研究进展[J]. 化工进展,2016,35(5):1477-1483. ZHOU D,LIANG F,YAO Y C. Research progress of negative film-forming additives in electrolyte for Li-ion batteries[J]. Chemical Industry and Engineering Progress,2016,35(5):1477-1483.
[23] 黄祯,冯国星. 中国科学院高能量密度锂电池研究进展快报[J]. 储能科学与技术,2016,5(2):172-176. HUANG Z,FENG G X. Progress on high energy density lithium batteries by CAS battery reseach group[J]. Energy Storage Science and Technology,2016,5(2):172-176.
[24] GUDURU R K,ICAZA J C. A brief review on multivalent intercalation batteries with aqueous electrolytes[J]. Nanomaterials,2016,6(3):41.
[25] SHTERENBERG I,SALAMA M,GOFER Y,et al. The challenge of developing rechargeable magnesium batteries[J]. Mrs Bulletin,2014,39(5):453-460.
[26] MOHTADI R,MIZUNO F. Magnesium batteries:current state of the art,issues and future perspectives[J]. Beilstein Journal of Nanotechnology,2014,5(1):1291-1311.
[27] HARRISON K L,BRIDGES C A,SEGRE C U,et al. Chemical and electrochemical lithiation of LiVOPO4 cathodes for lithium-ion batteries[J]. Chemistry of Materials,2014,26(12):3849-3861.
[28] LIN Y C,WEN B,WIADEREK K M,et al. Thermodynamics,kinetics and structural evolution of ε-LiVOPO4 over multiple lithium intercalation[J]. Chemistry of Materials,2016,28(6):1794-1805.
[29] WEN B H,WANG Q,LIN Y,et al. Molybdenum substituted vanadyl phosphate ε-VOPO4 with enhanced two-electron transfer reversibility and kinetics for lithium-ion batteries[J]. Chemistry of Materials,2016,28(9):3159-3170.
[30] YANG X,ZHANG L,ZHANG F,et al. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries[J]. ACS Nano,2014,8(5):5208-5215.
[31] LIANG X,HART C,PANG Q,et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications,2015,1:5682.
[32] WANG H L,YANG Y,LIANG Y Y,et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters,2011,11(7):2644-2647.
[33] GIRISHKUMAR G,MCCLOSKEY B,LUNTZ A C,et al. Lithium-air battery:promise and challenges[J]. The Journal of Physical Chemistry Letters,2010,1(14):2193-2203.
[34] BRUCE P G,FREUNBERGER S A,HARDWICK L J,et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29.
[35] CHOI J W,AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials,2016,1:16013.
[36] 张三佩,温兆银,靳俊,等. 二次钠-空气电池的研究进展[J]. 电化学,2015(5):425-432. ZHANG S P,WEN Z Y,JIN J,et al. Research progress of second sodium-air batteries[J]. Journal of Electrochemistry,2015(5):425-432.
[37] LANDA-MEDRANO I,LI C,ORTIZ-VITORIANO N,et al. Sodium-oxygen battery:steps toward reality[J]. The Journal of Physical Chemistry Letters,2016,7(7):1161-1166.
[38] HAYASHI K,SHIMA K,SUGIYAMA F. A mixed aqueous/aprotic sodium/air cell using a NASICON ceramic separator[J]. Journal of the Electrochemical Society,2013,160(9):A1467-A1472.
[39] 洪为臣,马洪运,赵宏博,等. 锌空气电池关键问题与发展趋势[J]. 化工进展,2016,35(6):1713-1722. HONG W C,MA H Y,ZHAO H B,et al. A critical review of zinc air battery:present status and perspective[J]. Chemical Industry and Engineering Progress,2016,35(6):1713-1722. |