Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4785-4794.DOI: 10.16085/j.issn.1000-6613.2025-0555
• Process systems modeling and simulation • Previous Articles
ZHAO Xiangyu(
), XU Dongyu, CHEN Zhengyu(
), XU Chunming, ZHANG Linzhou(
)
Received:2025-04-15
Revised:2025-07-01
Online:2025-09-08
Published:2025-08-25
Contact:
CHEN Zhengyu, ZHANG Linzhou
通讯作者:
陈政宇,张霖宙
作者简介:赵翔宇(1998—),男,博士研究生,研究方向为催化裂化分子级模型构建。E-mail:2023310250@student.cup.edu.cn。
基金资助:CLC Number:
ZHAO Xiangyu, XU Dongyu, CHEN Zhengyu, XU Chunming, ZHANG Linzhou. Development and optimization of a molecular-level model for methanol-to-olefins (MTO) reaction-regeneration process[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4785-4794.
赵翔宇, 徐东宇, 陈政宇, 徐春明, 张霖宙. 甲醇制烯烃反应-再生过程分子级模型构建及优化[J]. 化工进展, 2025, 44(8): 4785-4794.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0555
| 反应 | 指前因子 | 活化能/J·mol-1 |
|---|---|---|
| MTO反应 | ||
| 2CH3OH | 2.022×105 | 1.066×105 |
| C2H6O | 6.389×102 | 5.827×104 |
| C2H6O | 6.983×101 | 2.533×104 |
| C2H6O+CH3OH | 8.518 | 9.586×103 |
| C2H6O+2CH3OH | 8.162×10-1 | 1.245×104 |
| C2H6O+2CH3OH | 6.650×10-2 | 9.813×103 |
| C2H6O+2CH3OH | 2.481 | 1.275×104 |
| C2H6O+3CH3OH | 6.166 | 1.969×104 |
| C2H6O+4CH3OH | 2.333×10-5 | 1.959×103 |
| C2H4+H2 | 0.299 | 2.161×104 |
| C3H6+H2 | 1.940×10-2 | 1.853×104 |
| C4H8+H2 | 0.255 | 2.026×104 |
| C5H10+H2 | 1.020×10-3 | 2.401×104 |
| C5H10 | 7.603×10-4 | 8.733×103 |
| 2C4H8 | 0.900 | 8.733×103 |
| 2C3H6 | 5.000×10-2 | 8.733×103 |
| 烧焦反应 | ||
| CH q +(0.5+0.25q)O2 | 3.127×106 | 1.332×105 |
| CH q +(1+0.25q)O2 | 3.600×108 | 1.450×105 |
| 2CO+O2 | 3.000 | 7.048×104 |
| 2CO+O2 | 0.100 | 8.559×104 |
| 反应 | 指前因子 | 活化能/J·mol-1 |
|---|---|---|
| MTO反应 | ||
| 2CH3OH | 2.022×105 | 1.066×105 |
| C2H6O | 6.389×102 | 5.827×104 |
| C2H6O | 6.983×101 | 2.533×104 |
| C2H6O+CH3OH | 8.518 | 9.586×103 |
| C2H6O+2CH3OH | 8.162×10-1 | 1.245×104 |
| C2H6O+2CH3OH | 6.650×10-2 | 9.813×103 |
| C2H6O+2CH3OH | 2.481 | 1.275×104 |
| C2H6O+3CH3OH | 6.166 | 1.969×104 |
| C2H6O+4CH3OH | 2.333×10-5 | 1.959×103 |
| C2H4+H2 | 0.299 | 2.161×104 |
| C3H6+H2 | 1.940×10-2 | 1.853×104 |
| C4H8+H2 | 0.255 | 2.026×104 |
| C5H10+H2 | 1.020×10-3 | 2.401×104 |
| C5H10 | 7.603×10-4 | 8.733×103 |
| 2C4H8 | 0.900 | 8.733×103 |
| 2C3H6 | 5.000×10-2 | 8.733×103 |
| 烧焦反应 | ||
| CH q +(0.5+0.25q)O2 | 3.127×106 | 1.332×105 |
| CH q +(1+0.25q)O2 | 3.600×108 | 1.450×105 |
| 2CO+O2 | 3.000 | 7.048×104 |
| 2CO+O2 | 0.100 | 8.559×104 |
| [1] | 庞纪峰, 郑明远, 姜宇, 等. 乙二醇生产和精制技术研究进展[J]. 化工进展, 2013, 32(9): 2006-2014. |
| PANG Jifeng, ZHENG Mingyuan, JIANG Yu, et al. Progress in ethylene glycol production and purification[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2006-2014. | |
| [2] | 沈江, 陈俊士, 洪纯芬. 苯乙烯生产现状和发展趋势[J]. 现代化工, 2011, 31(11): 9-11. |
| SHEN Jiang, CHEN Junshi, HONG Chunfen. Status and development trends of styrene production[J]. Modern Chemical Industry, 2011, 31(11): 9-11. | |
| [3] | 王红霞. 氯乙烯技术现状及进展[J]. 石油化工, 2002, 31(6): 483-487. |
| WANG Hongxia. Present status and progress in the manufacturing technology of vinyl chloride[J]. Petrochemical Technology, 2002, 31(6): 483-487. | |
| [4] | 王俐. 醋酸生产技术进展[J]. 石油化工, 2005, 34(8): 797-801. |
| WANG Li. Progress in production technology of acetic acid[J]. Petrochemical Technology, 2005, 34(8): 797-801. | |
| [5] | FRIEBE Lars, NUYKEN Oskar, OBRECHT Werner. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization[M]//Neodymium Based Ziegler Catalysts-Fundamental Chemistry. Berlin: Springer, 2006: 1-154. |
| [6] | KIOUPIS Loukas I, MAGINN Edward J. Molecular simulation of poly-α-olefin synthetic lubricants: Impact of molecular architecture on performance properties[J]. The Journal of Physical Chemistry B, 1999, 103(49): 10781-10790. |
| [7] | 南海明, 文尧顺, 吴秀章, 等. 甲醇制烯烃技术最新进展[J]. 现代化工, 2014, 34(7): 41-46. |
| Haiming NAN, WEN Yaoshun, WU Xiuzhang, et al. Recent development of methanol to olefins technology[J]. Modern Chemical Industry, 2014, 34(7): 41-46. | |
| [8] | 吴秀章. 煤制低碳烯烃工业示范工程最新进展[J]. 化工进展, 2014, 33(4): 787-794. |
| WU Xiuzhang. Latest progress of coal to light olefins industrial demonstration project[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 787-794. | |
| [9] | MORSCHBACKER Antonio. Bio-ethanol based ethylene[J]. Polymer Reviews, 2009, 49(2): 79-84. |
| [10] | 王华, 刘中民. 甲烷直接转化研究进展[J]. 化学进展, 2004, 16(4): 593-602. |
| WANG Hua, LIU Zhongmin. Progress in direct conversion of methane[J]. Progress in Chemistry, 2004, 16(4): 593-602. | |
| [11] | LUNSFORD Jack H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century[J]. Catalysis Today, 2000, 63(2/3/4): 165-174. |
| [12] | 朱杰, 崔宇, 陈元君, 等. 甲醇制烯烃过程研究进展[J]. 化工学报, 2010, 61(7): 1674-1684. |
| ZHU Jie, CUI Yu, CHEN Yuanjun, et al. Recent researches on process from methanol to olefins[J]. CIESC Journal, 2010, 61(7): 1674-1684. | |
| [13] | 王连勇, 蔡九菊, 冯杰, 等. 煤代油技术研究进展[J]. 中国冶金, 2005, 15(8): 45-48. |
| WANG Lianyong, CAI Jiuju, FENG Jie, et al. Progress on coal replacing oil technology research[J]. China Metallurgy, 2005, 15(8): 45-48. | |
| [14] | CHANG Clarence D. Methanol conversion to light olefins[J]. Catalysis Reviews, 1984, 26(3/4): 323-345. |
| [15] | Michael STÖCKER. Methanol-to-hydrocarbons: Catalytic materials and their behavior 1[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3-48. |
| [16] | GOGATE Makarand R. Methanol-to-olefins process technology: Current status and future prospects[J]. Petroleum Science and Technology, 2019, 37(5): 559-565. |
| [17] | ROTHAEMEL M, H-D HOLTMANN. Methanol to propylene MTP-Lurgi’s way[J]. Erdöl Erdgas Kohle, 2002(5):234-237. |
| [18] | 刘中民, 齐越. 甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验[J]. 中国科学院院刊, 2006, 21(5): 406-408. |
| LIU Zhongmin, QI Yue. Process research, development and demonstration of dimethylether or methanol to olefin (DMTO) technology[J]. Bulletin of Chinese Academy of Sciences, 2006, 21(5): 406-408. | |
| [19] | 王垚, 魏飞, 钱震, 等. 流化床催化裂解生产丙烯的方法及反应器: CN1962573[P]. 2007-05-16. |
| WANG Yao, WEI Fei, QIAN Zhen, et al. Fluidized-bed catalytic cracking process and reactor system for high-yield propylene production: CN1962573[P]. 2007-05-16. | |
| [20] | James F HAW, SONG Weiguo, MARCUS David M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research, 2003, 36(5): 317-326. |
| [21] | ZHANG Wenna, CHU Yueying, WEI Yingxu, et al. Influences of the confinement effect and acid strength of zeolite on the mechanisms of methanol-to-olefins conversion over H-ZSM-5: A theoretical study of alkenes-based cycle[J]. Microporous and Mesoporous Materials, 2016, 231: 216-229. |
| [22] | DAHL Ivar M, KOLBOE Stein. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336. |
| [23] | DAHL Ivar M, KOLBOE Stein. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34[J]. Journal of Catalysis, 1996, 161(1): 304-309. |
| [24] | PARK Tae-Yun, FROMENT Gilbert F. Kinetic modeling of the methanol to olefins process. 1. Model formulation[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4172-4186. |
| [25] | PARK Tae-Yun, FROMENT Gilbert F. Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4187-4196. |
| [26] | CHEN N Y, REAGAN W J. Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts[J]. Journal of Catalysis, 1979, 59(1): 123-129. |
| [27] | CHANG Clarence D. A kinetic model for methanol conversion to hydrocarbons[J]. Chemical Engineering Science, 1980, 35 (3): 619-622. |
| [28] | SCHOENFELDER Hendrik, HINDERER Juergen, WERTHER Joachim, et al. Methanol to olefins—Prediction of the performance of a circulating fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor[J]. Chemical Engineering Science, 1994, 49(24): 5377-5390. |
| [29] | SEDRAN U, MAHAY A, DE LASA H I. Modelling methanol conversion to hydrocarbons: Alternative kinetic models[J]. The Chemical Engineering Journal, 1990, 45(1): 33-42. |
| [30] | Rene BOS A N, TROMP Peter J J, AKSE Henk N. Conversion of methanol to lower olefins. kinetic modeling, reactor simulation, and selection[J]. Industrial & Engineering Chemistry Research, 1995, 34(11): 3808-3816. |
| [31] | 史权, 张霖宙, 赵锁奇, 等. 炼化分子管理技术: 概念与理论基础[J]. 石油科学通报, 2016, 1(2): 270-278. |
| SHI Quan, ZHANG Linzhou, ZHAO Suoqi, et al. Molecular management for petroleum refining: Concepts and fundamentals[J]. Petroleum Science Bulletin, 2016, 1(2): 270-278. | |
| [32] | CHEN Zhengyu, WANG Gang, ZHAO Suoqi, et al. Prediction of molecular distribution and temperature profile of FCC process through molecular-level kinetic modeling[J]. Chemical Engineering Science, 2022, 264: 118189. |
| [33] | CHEN D, GRØNVOLD A, MOLJORD K, et al. Methanol conversion to light olefins over SAPO-34: Reaction network and deactivation kinetics[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4116-4123. |
| [34] | LEE Min-Kyung, KIM Jinsu, Jun-Hyung RYU, et al. Modeling of reaction and deactivation kinetics in methanol-to-olefins reaction on SAPO-34[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13227-13238. |
| [35] | ALWAHABI Saeed M, FROMENT Gilbert F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5098-5111. |
| [36] | 胡浩. 甲醇制烯烃(MTO)催化反应工程的研究[D]. 上海: 华东理工大学, 2010. |
| HU Hao. Research of catalytic reaction engineering for methanol-to-olefin process[D]. Shanghai: East China University of Science and Technology, 2010. |
| [1] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [2] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| [3] | ZHU Xiaozhong, FANG Wei, ZHAO Yi. Application of deep VGG model-based prediction in ethylene cracker plant [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4419-4429. |
| [4] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [5] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [6] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [7] | DONG Fenglian, LI Peng, WEI Zhiwei, SUN Xin, XU Hekai, HE Chang. Optimization of mixing processing considering crude oil procurement selection [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4648-4656. |
| [8] | JIA Ziting, CUI Ziyuan, WANG Yufei. Optimization strategy for regularizing flexible plant layout [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4669-4679. |
| [9] | HUANG Xukun, GE Jijun, XU Pan, BI Rongshan, LI Guoxuan. Simulation and optimization of polyarylester multi-stage countercurrent washing process [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4680-4687. |
| [10] | HUANG Lingjun, ZHU Qingyu, ZHANG Yu, SUN Weiqi, DOU Dongyang, WANG Qili. Simultaneous optimization of hydrogen network with CO₂ hydrogenation to methanol process based on evolutionary response surface method [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4688-4700. |
| [11] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [12] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [13] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [14] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [15] | SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |