Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3524-3540.DOI: 10.16085/j.issn.1000-6613.2024-2023
• Materials science and technology • Previous Articles
ZHAO Yong1,2(
), ZHAO Yuan1, HUANG Peng1(
)
Received:2024-12-12
Revised:2025-01-14
Online:2025-07-08
Published:2025-06-25
Contact:
HUANG Peng
通讯作者:
黄澎
作者简介:赵勇(1993—),男,博士,助理研究员,研究方向为煤基功能碳材料。E-mail:y.zhao1972@foxmail.com。
基金资助:CLC Number:
ZHAO Yong, ZHAO Yuan, HUANG Peng. Research progress of cathode interface materials for organic solar cells[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3524-3540.
赵勇, 赵渊, 黄澎. 有机太阳能电池阴极界面材料研究进展[J]. 化工进展, 2025, 44(6): 3524-3540.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2023
| [1] | ZHAO Xin, MA Xiaowei, CHEN Boyang, et al. Challenges toward carbon neutrality in China: Strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
| [2] | 黄飞, 薄志山, 耿延候, 等. 光电高分子材料的研究进展[J]. 高分子学报, 2019, 50(10): 988-1046. |
| HUANG Fei, BO Zhishan, GENG Yanhou, et al. Study on optoelectronic polymers: An overview and outlook[J]. Acta Polymerica Sinica, 2019, 50(10): 988-1046. | |
| [3] | LI Gang, ZHU Rui, YANG Yang. Polymer solar cells[J]. Nature Photonics, 2012, 6(3): 153-161. |
| [4] | 郭经波, 韩云飞, 龚超, 等. 狭缝涂布大面积氧化锌薄膜的制备及其在柔性有机太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1976-1985. |
| GUO Jingbo, HAN Yunfei, GONG Chao, et al. Slot-die coated large-area ZnO films for flexible organic solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1976-1985. | |
| [5] | 宾海军, 李永舫. 非富勒烯聚合物太阳电池研究进展[J]. 高分子学报, 2017, 48(9): 1444-1461. |
| Haijun BIN, LI Yongfang. Recent research progress of photovoltaic materials for nonfullerene polymer solar cells[J]. Acta Polymerica Sinica, 2017, 48(9): 1444-1461. | |
| [6] | LIU Xiaoyu, ZHENG Zhong, WANG Jianqiu, et al. Fluidic manipulating of printable zinc oxide for flexible organic solar cells[J]. Advanced Materials, 2022, 34(3): e2106453. |
| [7] | 徐翔, 李坤, 魏擎亚, 等. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178. |
| XU Xiang, LI Kun, WEI Qingya, et al. Organic solar cells based on non-fullerene small molecular acceptor Y6[J]. Progress in Chemistry, 2021, 33(2): 165-178. | |
| [8] | CHEN Chen, WANG Liang, XIA Weiyi, et al. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%[J]. Nature Communications, 2024, 15(1): 6865. |
| [9] | SUN Yuandong, WANG Liang, GUO Chuanhang, et al. π-Extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency[J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019. |
| [10] | JIANG Yuanyuan, SUN Shaoming, XU Renjie, et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells[J]. Nature Energy, 2024, 9(8): 975-986. |
| [11] | LI Yanxun, HUANG Bo, ZHANG Xuning, et al. Lifetime over 10000 hours for organic solar cells with Ir/IrO x electron-transporting layer[J]. Nature Communications, 2023, 14(1): 1241. |
| [12] | LI Xiaodong, ZHANG Wwenjun, USMAN K, et al. Small molecule interlayers in organic solar cells[J]. Advanced Energy Materials, 2018, 8(28): 1702730. |
| [13] | MENG Lingxian, ZHANG Yamin, WAN Xiangjian, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098. |
| [14] | 史永强, 王英锋, 郭旭岗. 酰亚胺基N-型高分子半导体研究进展[J]. 高分子学报, 2019, 50(9): 873-889. |
| SHI Yongqiang, WANG Yingfeng, GUO Xugang. Recent progress of imide-functionalized N-type polymer semiconductors[J]. Acta Polymerica Sinica, 2019, 50(9): 873-889. | |
| [15] | YAO Jia, QIU Beibei, ZHANG Zhiguo, et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells[J]. Nature Communications, 2020, 11(1): 2726. |
| [16] | ZHAO Yong, LIU Xiaojie, JING Xin, et al. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells[J]. Journal of Colloid and Interface Science, 2022, 627: 880-890. |
| [17] | AHMAD Nafees, ZHOU Huiqiong, FAN Ping, et al. Recent progress in cathode interlayer materials for non-fullerene organic solar cells[J]. EcoMat, 2022, 4(1): e12156. |
| [18] | ZHAO Yong, LIU Yang, LIU Xiaojie, et al. Aminonaphthalimide-based molecular cathode interlayers for As-cast organic solar cells[J]. ChemSusChem, 2021, 14(21): 4783-4792. |
| [19] | PAN Wei, HAN Yunfei, WANG Zhenguo, et al. An efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol-gel ZnO and ZnO nanoparticle bilayer electron transporting layers[J]. Journal of Materials Chemistry A, 2021, 9(31): 16889-16897. |
| [20] | ZHANG Zhiguo, QI Boyuan, JIN Zhiwen, et al. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells[J]. Energy & Environmental Science, 2014, 7(6): 1966-1973. |
| [21] | ZHAO Yong, LIU Xiaojie, JING Xin, et al. Multi-armed imide-based molecules promote interfacial charge transfer for efficient organic solar cells[J]. Chemical Engineering Journal, 2022, 441: 135894. |
| [22] | NIAN Li, CHEN Zhenhui, stefanie HERBST, et al. Aqueous solution processed photoconductive cathode interlayer for high performance polymer solar cells with thick interlayer and thick active layer[J]. Advanced Materials, 2016, 28(34): 7521-7526. |
| [23] | PAN Fei, BAI Song, LIU Tianhao, et al. Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells[J]. Science China Chemistry, 2021, 64(4): 565-575. |
| [24] | LIU Chunhui, XIAO Chenyi, LI Weiwei. Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells[J]. Journal of Materials Chemistry C, 2021, 9(40): 14093-14114. |
| [25] | ZHOU Dan, WANG Yanyan, LI Yubing, et al. N-type small molecule electrolyte cathode interface layer with thickness insensitivity for organic solar cells[J]. Nano Energy, 2024, 128: 109890. |
| [26] | WEN Xinbo, ZHANG Yu, XIE Guojing, et al. Phenol-functionalized perylene bisimides as amine-free electron transporting interlayers for stable nonfullerene organic solar cells[J]. Advanced Functional Materials, 2022, 32(17): 2111706. |
| [27] | WANG Jianru, ZHOU Dan, QUAN Jianwei, et al. Synergistically modulating the Bay and amid sites of a perylene diimide cathode interface layer for high-efficiency and high-stability organic solar cells[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(30): 11385-11395. |
| [28] | LIU Ming, JIANG Yufeng, LIU Duanzijing, et al. Imidazole-functionalized imide interlayers for high performance organic solar cells[J]. ACS Energy Letters, 2021, 6(9): 3228-3235. |
| [29] | LIU Ming, FAN Pu, HU Qin, et al. Naphthalene-diimide-based ionenes as universal interlayers for efficient organic solar cells[J]. Angewandte Chemie International Edition, 2020, 59(41): 18131-18135. |
| [30] | TIAN Li, FENG Lingwei, GUO Shukui, et al. Enhancing the efficiency and stability of inverted binary organic solar cells through hydroxylated perylene diimide derivative cathode interlayers[J]. Journal of Materials Chemistry A, 2024, 12(11): 6644-6651. |
| [31] | LI Zhe, XIANG Yanhe, LI Jiayu, et al. Solution-processing induced H-aggregate of perylene-diimide zwitterion exhibiting compact molecular stacking toward efficient cathode modification in organic solar cells[J]. Angewandte Chemie International Edition, 2024, 64(2): e202413986. |
| [32] | LI Yaqin, HAN Mengmeng, YANG Wenli, et al. Perylene diimide-based cathode interfacial materials: Adjustable molecular structures and conformation, optimized film morphology, and much improved performance of non-fullerene polymer solar cells[J]. Materials Chemistry Frontiers, 2019, 3(9): 1840-1848. |
| [33] | ZHONG Ke, DENG Jiawei, ZENG Rui, et al. Brominated perylene diimides as cathode interface materials for high efficiency organic solar cells[J]. Advanced Functional Materials, 2025, 35(6): 2414822. |
| [34] | JIANG Huanxiang, LIANG Qi, GUO Haishuo, et al. All roads lead to Rome: Isomers with divergent cathode modification mechanisms toward ohmic contact[J]. Journal of the American Chemical Society, 2024, 146(44): 30262-30271. |
| [35] | WANG Zongtao, WANG Helin, YANG Lei, et al. Selenophene-fused perylene diimide-based cathode interlayer enables 19% efficiency binary organic solar cells via stimulative charge extraction[J]. Angewandte Chemie International Edition, 2024, 63(37): e202404921. |
| [36] | LIU Ming, LI Mengyang, JIANG Yufeng, et al. Conductive ionenes promote interfacial self-doping for efficient organic solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41810-41817. |
| [37] | LIAO Qing, KANG Qian, YANG Yi, et al. Highly stable organic solar cells based on an ultraviolet-resistant cathode interfacial layer[J]. CCS Chemistry, 2022, 4(3): 938-948. |
| [38] | YU Yue, WANG Jianqiu, CUI Yong, et al. Cost-effective cathode interlayer material for scalable organic photovoltaic cells[J]. Journal of the American Chemical Society, 2024, 146(12): 8697-8705. |
| [39] | PAN Fei, SUN Chenkai, LI Yingfen, et al. Solution-processable N-doped graphene-containing cathode interfacial materials for high-performance organic solar cells[J]. Energy & Environmental Science, 2019, 12(11): 3400-3411. |
| [40] | YANG Qing, YU Shu Wen, FU Ping, et al. Boosting performance of non- fullerene organic solar cells by 2D g-C3N4 doped PEDOT:PSS[J]. Advanced Functional Materials, 2020, 30(15): 1910205. |
| [41] | HOU Chunli, YU Huangzhong. Modifying the nanostructures of PEDOT:PSS/Ti3C2T x composite hole transport layers for highly efficient polymer solar cells[J]. Journal of Materials Chemistry C, 2020, 8(12): 4169-4180. |
| [42] | SONG Hang, HU Dingqin, Jie LYU, et al. Hybrid cathode interlayer enables 17.4% efficiency binary organic solar cells[J]. Advanced Science, 2022, 9(8): 2105575. |
| [43] | DING Siyi, MA Ruijie, YANG Tao, et al. Boosting the efficiency of non-fullerene organic solar cells via a simple cathode modification method[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51078-51085. |
| [44] | SUN Wei, WANG Liang, FU Yiwei, et al. Brominated quaternary ammonium salt-assisted hybrid electron transport layer for high-performance conventional organic solar cells[J]. ACS Applied Materials & Interfaces, 2024, 16(18): 23677-23683. |
| [45] | LI Yawen, ZHANG Zhenzhen, HAN Xiaona, et al. Fine-tuning contact via complexation for high-performance organic solar cells[J]. CCS Chemistry, 2022, 4(3): 1087-1097. |
| [46] | XIONG Xia, XUE Xiapnan, ZHANG Ming, et al. Melamine-doped cathode interlayer enables high-efficiency organic solar cells[J]. ACS Energy Letters, 2021, 6(10): 3582-3589. |
| [47] | HU Huichao, XU Huimin, WU Junying, et al. Secondary bonds modifying conjugate-blocked linkages of biomass-derived lignin to form electron transfer 3D networks for efficiency exceeding 16% nonfullerene organic solar cells[J]. Advanced Functional Materials, 2020, 30(23): 2001494. |
| [48] | PAN Fei, BAI Song, WEI Xian, et al. 3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells[J]. Science China Materials, 2021, 64(2): 277-287. |
| [49] | LEE Seung-Hoon, Seo-Jin KO, Seung-Hun EOM, et al. Composite interlayer consisting of alcohol-soluble polyfluorene and carbon nanotubes for efficient polymer solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14244-14253. |
| [50] | QIN Yang, CHANG Yilin, ZHU Xiangwei, et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells[J]. Nano Today, 2021, 41: 101289. |
| [51] | SHARMA Anirudh, SINGH Saumya, SONG Xin, et al. A nonionic alcohol soluble polymer cathode interlayer enables efficient organic and perovskite solar cells[J]. Chemistry of Materials, 2021, 33(22): 8602-8611. |
| [52] | DONG Sheng, ZHANG Kai, XIE Boming, et al. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents[J]. Advanced Energy Materials, 2019, 9(1): 1802832. |
| [53] | CAI Ping, HUANG Xiaofang, ZHAN Tao, et al. Cross-linkable and alcohol-soluble pyridine-incorporated polyfluorene derivative as a cathode interface layer for high-efficiency and stable organic solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12296-12304. |
| [54] | QUAN Jianwei, ZHOU Dan, WAN Wentian, et al. Intramolecular lock conjugated polymer electrolytes as the cathode interfacial layer for nonfullerene organic solar cells[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(9): 3851-3862. |
| [55] | WANG Yufei, LIANG Zezhou, QIN Jicheng, et al. An alcohol-soluble polymer electron transport layer based on perylene diimide derivatives for polymer solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1678-1685. |
| [56] | SALMA Sabrina Aufar, JEONG Mijin, MOON Doo Kyung, et al. Investigating the effect of diverse structural variation of conjugated polymer electrolytes as the interlayer on photovoltaic properties[J]. Chemical Engineering Journal, 2021, 420: 129895. |
| [57] | WANG Yi, LIU Ming, CHEN Zhihui, et al. Adenine-based polymer modified zinc oxide for efficient inverted organic solar cells[J]. Journal of Materials Chemistry C, 2021, 9(35): 11851-11858. |
| [58] | HUANG Jinzhen, YU Huangzhong, ZHOU Xiaoming. ZnO nanoparticles modified with biomaterial GHK-Cu as electron transport layer to fabricate highly efficient inverted polymer solar cells[J]. Chemical Engineering Journal, 2022, 428: 131366. |
| [59] | LI Shufang, CHEN Weikun, SHI Changzhou, et al. Designed polar cosolvent-prepared zinc oxide film for efficient and stable inverted organic solar cells[J]. Small, 2024, 20(49): e2405743. |
| [60] | ZHENG Jiaxin, LUO Yinqi, WEN Xinbo, et al. Induced crystallization of sol-gel-derived zinc oxide for efficient non-fullerene polymer solar cells[J]. Journal of Materials Chemistry A, 2021, 9(15): 9616-9623. |
| [61] | CHEN Zhi, WANG Jie, JIN Hui, et al. An underestimated photoactive area in organic solar cells based on a ZnO interlayer[J]. Journal of Materials Chemistry C, 2021, 9(35): 11753-11760. |
| [62] | HOFF Anderson, FARAHAT Mahmoud E, PAHLEVANI Majid, et al. Tin oxide electron transport layers for air-/solution-processed conventional organic solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1568-1577. |
| [63] | SUO Zhaochen, LI Longyu, LIU Jian, et al. A water solution processed hybrid electron transport layer simultaneously enhances efficiency and stability in inverted structure organic solar cells[J]. Advanced Functional Materials, 2024, 34(51): 2409699. |
| [64] | BAI Yiming, SHI Rongkang, BAI Yinglong, et al. Efficient organic solar cells with low-temperature in situ prepared Ga2O3 or In2O3 electron collection layers[J]. Science China Materials, 2021, 64(5): 1095-1104. |
| [65] | HUANG Shuai, KANG Bonan, DUAN Lian, et al. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers[J]. Journal of Colloid and Interface Science, 2021, 583: 178-187. |
| [66] | HUANG Chengwen, SHI Shengwei, YU Huangzhong. Work function adjustment of Nb2CT x nanoflakes as hole and electron transport layers in organic solar cells by controlling surface functional groups[J]. ACS Energy Letters, 2021, 6(10): 3464-3472. |
| [67] | LI Tao, LIU Guoqiang, YAO Guoying, et al. Ligand-triggered MXene quantum dots with tunable work function as anode and cathode interlayers for organic solar cells[J]. Solar RRL, 2024, 8(13): 2400270. |
| [68] | SONG Xin, LIU Guilin, SUN Po, et al. Zirconium-doped zinc oxide nanoparticles as cathode interfacial layers for efficiently rigid and flexible organic solar cells[J]. Journal of Physical Chemistry Letters, 2021, 12(43): 10616-10621. |
| [69] | WANG Jie, PAN Hailin, XU Xiaoyun, et al. Li-doped ZnO electron transport layer for improved performance and photostability of organic solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12450-12460. |
| [70] | LIU Xiujun, JI Yitong, XIA Zezhou, et al. In-doped ZnO electron transport layer for high-efficiency ultrathin flexible organic solar cells[J]. Advanced Science, 2024, 11(37): e2402158. |
| [71] | SONG Xin, LIU Guilin, GAO Weilian, et al. Manipulation of zinc oxide with zirconium doping for efficient inverted organic solar cells[J]. Small, 2021, 17(7): 2006387. |
| [72] | YANG Song, YU Huangzhong. The modification of ZnO surface with natural antioxidants to fabricate highly efficient and stable inverted organic solar cells[J]. Chemical Engineering Journal, 2023, 452: 139658. |
| [73] | WEN Xinbo, Agnieszka NOWAK-KRÓL, NAGLER Oliver, et al. Tetrahydroxy-perylene bisimide embedded in zinc oxide thin film as an electron-electron transporting layer for high-performance non-fullerene organic solar cells[J]. Angewandte Chemie International Edition, 2019, 58(37): 13051-13055. |
| [74] | XIA Yiqiu, WANG Chen, DONG Biao, et al. Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14423-14432. |
| [75] | CUI Mengqi, LI Na, WANG Yuying, et al. Performance enhancement of organic solar cells by adding a liquid crystalline molecule in cathode and anode interlayers[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35639-35646. |
| [76] | HOU Chunli, YU Huangzhong. ZnO/Ti3C2T x monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells[J]. Chemical Engineering Journal, 2021, 407: 127192. |
| [77] | USMANI Belal, RANJAN Rahul, PRATEEK, et al. Inverted PTB7-Th:PC71BM organic solar cells with 11.8% PCE via incorporation of gold nanoparticles in ZnO electron transport layer[J]. Solar Energy, 2021, 214: 220-230. |
| [78] | CUI Mengqi, RONG Qikun, WANG Rong, et al. Zirconium oxide doped organosilica nanodots as light- and charge-management cathode interlayer for highly efficient and stable inverted organic solar cells[J]. Small, 2024, 20(33): 2311339. |
| [79] | HUANG Shuai, DUAN Lian, ZHANG Dongdong. Synergistic optimization of interfacial energy-level alignment and defect passivation toward efficient annealing-free inverted polymer solar cells[J]. Journal of Materials Chemistry A, 2020, 8(36): 18792-18801. |
| [80] | WANG Yupu, CHEN Qiaomei, ZHANG Guangcong, et al. Polyimide/ZnO composite cooperatively crosslinked by Zn2+ salt-bondings and hydrogen bondings for ultraflexible organic solar cells[J]. Chemical Engineering Journal, 2023, 451: 138612. |
| [81] | GUANG Shun, YU Jiangsheng, WANG Hongtao, et al. A low temperature processable tin oxide interlayer via amine-modification for efficient and stable organic solar cells[J]. Journal of Energy Chemistry, 2021, 56: 496-503. |
| [82] | QU Shenya, YU Jiangsheng, CAO Jinru, et al. Highly efficient organic solar cells enabled by a porous ZnO/PEIE electron transport layer with enhanced light trapping[J]. Science China Materials, 2021, 64(4): 808-819. |
| [83] | LI Jianfeng, WANG Ningning, WANG Yufei, et al. Efficient inverted organic solar cells with a thin natural biomaterial L-Arginine as electron transport layer[J]. Solar Energy, 2020, 196: 168-176. |
| [84] | ZHENG Zhong, WANG Rong, YAO Huifeng, et al. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current[J]. Nano Energy, 2018, 50: 169-175. |
| [85] | DUAN Jiamin, YU Yufu, ZENG Min, et al. Cationic polyelectrolytes with alkylsulfonate counterions as a cathode interface layer for high-performance polymer solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44679-44688. |
| [86] | YU Yufu, TAO Wuxi, WANG Linqiao, et al. Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells[J]. Journal of Materials Chemistry A, 2021, 9(40): 22926-22933. |
| [87] | CAO Fong-Yi, SU Yen-Chen, HSUEH Yung-Ching, et al. Alcohol-soluble zwitterionic 4-(dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate small molecule as a cathode modifier for nonfullerene acceptor-based organic solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10222-10230. |
| [88] | YANG Bei, ZHANG Shaoqing, LI Sunsun, et al. A self-organized poly(vinylpyrrolidone)-based cathode interlayer in inverted fullerene-free organic solar cells[J]. Advanced Materials, 2019, 31(2): 1804657. |
| [89] | WANG Cheng, XIN Yufei, GU Haoran, et al. An N-doping cross-linkable quinoidal compound as an electron transport material for fully stretchable inverted organic solar cells[J]. Angewandte Chemie International Edition, 2025, 137(3): e202415440. |
| [90] | LIU Yao, SHERI Madhu, COLE Marcus D, et al. Transforming ionene polymers into efficient cathode interlayers with pendent fullerenes[J]. Angewandte Chemie International Edition, 2019, 58(17): 5677-5681. |
| [91] | FENG Luxin, XIANG Yanhe, LI Zhe, et al. Non-ionic perylene-diimide polymer as universal cathode interlayer for conventional, inverted, and blade-coated organic solar cells[J]. Angewandte Chemie International Edition, 2024, 63(43): e202410857. |
| [92] | KYEONG Minkyu, LEE Jinho, DABOCZI Matyas, et al. Organic cathode interfacial materials for non-fullerene organic solar cells[J]. Journal of Materials Chemistry A, 2021, 9(23): 13506-13514. |
| [93] | ZHANG Xiaolin, SHEN Wenfei, ZHAO Yue, et al. Non-conjugated natural alginate as electron-transport layer for high performance polymer solar cells after modification[J]. Journal of Power Sources, 2021, 510: 230408. |
| [94] | ZHENG Haolan, HU Lin, HU Xiaotian, et al. Designing thickness-insensitive cathode interlayers via constructing noncovalently conformational locks for highly efficient non-fullerene organic solar cells[J]. Journal of Materials Chemistry A, 2024, 12(4): 2413-2422. |
| [95] | XU Guodong, HU Xiaotian, LIAO Xunfan, et al. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics[J]. Chinese Journal of Polymer Science, 2021, 39(11): 1441-1447. |
| [96] | LEI Hongliang, YU Fengyi, CHEN Chen, et al. Electron transporting polymeric materials with partial quaternization for high-performance organic solar cells[J]. Macromolecular Rapid Communications, 2024, 45(22): 2400479. |
| [97] | ZHANG Guangjun, XU Xiaopeng, LEE Young Woong, et al. Achieving a high fill factor and stability in perylene diimide-based polymer solar cells using the molecular lock effect between 4,4′-bipyridine and a tri(8-hydroxyquinoline)aluminum(Ⅲ) core[J]. Advanced Functional Materials, 2019, 29(29): 1902079. |
| [98] | LIU Hao, YU Runnan, BAI Yiming, et al. Size-controllable metal chelates as both light scattering centers and electron collection layer for high-performance polymer solar cells[J]. CCS Chemistry, 2021, 3(10): 37-49. |
| [99] | LIU Hao, MA Zongwen, YU Runnan, et al. Crosslinkable metal chelate as the electron transport layer for efficient and stable inverted polymer solar cells[J]. Materials Chemistry Frontiers, 2020, 4(10): 2995-3002. |
| [100] | ZHOU Pengchao, LIU Yuling, GU Jialu, et al. Enhanced charge collection in non-fullerene organic solar cells using iridium complex as an electron extraction layer[J]. Advanced Materials Interfaces, 2021, 8(19): 2100850. |
| [101] | LIU Longzhu, CHEN Shiyan, QU Yangyang, et al. Nanographene-osmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18%[J]. Advanced Materials, 2021, 33(30): 2101279. |
| [102] | QIU Jing, ZHANG Yue, LIU Yan, et al. Surfactant-encapsulated polyoxometalate complex as a cathode interlayer for nonfullerene polymer solar cells[J]. CCS Chemistry, 2022, 4(3): 975-986. |
| [103] | KAN Yuanyuan, SUN Yanna, REN Yi, et al. Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells[J]. Advanced Materials, 2024, 36(16): e2312635. |
| [104] | CUI Chenyu, FU Shaopeng, YANG Min, et al. Improved efficiency of polymer solar cells using alcohol-soluble self-doped N-type polymers as cathode interface layer[J]. Materials Today Communications, 2024, 39: 108749. |
| [105] | CAI Chunsheng, YAO Jia, CHEN Lie, et al. Silicon naphthalocyanine tetraimides: Cathode interlayer materials for highly efficient organic solar cells[J]. Angewandte Chemie International Edition, 2021, 60(35): 19053-19057. |
| [106] | CUI Mengqi, LI Dan, DU Xiaoyan, et al. A cost-effective, aqueous-solution-processed cathode interlayer based on organosilica nanodots for highly efficient and stable organic solar cells[J]. Advanced Materials, 2020, 32(38): e2002973. |
| [107] | CHEN Can, ZHANG Chunlin, PENG Yichun, et al. An alcohol-soluble small molecule as efficient cathode interfacial layer materials for polymer solar cells[J]. Optical Materials, 2021, 113: 110909. |
| [108] | ZHANG Lei, WANG Yuxing, WEN Junjie, et al. Configurational isomerization-induced orientation switching: Non-fused ring dipodal phosphonic acids as hole-extraction layers for efficient organic solar cells[J]. Angewandte Chemie International Edition, 2024, 63(48): e202408960. |
| [109] | JING Jianhua, DONG Sheng, ZHANG Kai, et al. In-situ self-organized anode interlayer enables organic solar cells with simultaneously simplified processing and greatly improved efficiency to 17.8%[J]. Nano Energy, 2022, 93: 106814. |
| [110] | LIU Wenxu, WEN Junjie, YU Haicheng, et al. Thienyltriazine triamides: Thickness insensitive interlayer materials featuring fine-tuned optoelectronic and aggregation characters for efficient organic solar cells[J]. Angewandte Chemie International Edition, 2025, 64(1): e202413135. |
| [1] | LIU Chunbo1,ZHANG Shi1,WANG Long1,LIU Yang1,LIU Min1,CHE Guangbo2,SU Bin2,XU Zhanlin1. Applications of buffer layers in organic solar cells [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 310-315. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |