Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3132-3143.DOI: 10.16085/j.issn.1000-6613.2024-1536
• Special column: Frontiers of interdisciplinary technologies in chemical engineering and environmental sciences • Previous Articles
LEI Xueyan1(
), ZHU Yichun1,2, ZHANG Chao1,2(
), HAO Wanting1, CHEN Zilong1, SONG Xianwei1, HUANG Shuchang1,2, DONG Shanyan1,2
Received:2024-09-20
Revised:2024-11-06
Online:2025-07-08
Published:2025-06-25
Contact:
ZHANG Chao
雷雪艳1(
), 朱易春1,2, 张超1,2(
), 郝宛婷1, 陈仔龙1, 宋贤威1, 黄书昌1,2, 董姗燕1,2
通讯作者:
张超
作者简介:雷雪艳(2000—),女,硕士研究生,研究方向为污水生物脱氮。E-mail:1811059875@qq.com。
基金资助:CLC Number:
LEI Xueyan, ZHU Yichun, ZHANG Chao, HAO Wanting, CHEN Zilong, SONG Xianwei, HUANG Shuchang, DONG Shanyan. Efficient synchronous nitrogen and phosphorus removal in zero valent iron coupled anaerobic ammonia oxidation system[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3132-3143.
雷雪艳, 朱易春, 张超, 郝宛婷, 陈仔龙, 宋贤威, 黄书昌, 董姗燕. 零价铁耦合厌氧氨氧化系统高效同步脱氮除磷[J]. 化工进展, 2025, 44(6): 3132-3143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1536
| 组别 | 峰中心位置及荧光强度 | ||
|---|---|---|---|
| 峰A | 峰B | 峰C | |
| 0-LB(EPS) | 265nm/479.2nm(243.548) | 420nm/481nm(680.446) | 285nm/327nm(1563.432) |
| 0.5g-LB(EPS) | 265nm/479nm(110.41) | 410nm/478.2nm(308.793) | 285nm/333.8nm(752.269) |
| 1g-LB(EPS) | 265nm/476.8nm(83.829) | 410nm/479.8nm(229.394) | 285nm/334.2nm(739.401) |
| 2g-LB(EPS) | 280nm/431nm(62.354) | 405nm/469.4nm(145.001) | 285nm/331.4nm(549.932) |
| 4g-LB(EPS) | 285nm/477nm(54.834) | 410nm/474nm(159.905) | 285nm/331.4nm(544.004) |
| 8g-LB(EPS) | — | — | 280nm/309.4nm(418.391) |
| 0-TB(EPS) | 290nm/345.6nm(1808.071) | 425nm/475.8nm(2300.446) | — |
| 0.5g-TB(EPS) | 290nm/353.6nm(1069.614) | 425nm/474.2nm(2233.245) | — |
| 1g-TB(EPS) | 290nm/354.4nm(1463.342) | 425nm/475.2nm(2080.072) | — |
| 2g-TB(EPS) | 290nm/353.2nm(911.849) | 425nm/474.6nm(1782.129) | — |
| 4g-TB(EPS) | 290nm/350.8nm(1150.633) | 425nm/473.8nm(1669.835) | — |
| 8g-TB(EPS) | 290nm/355.4nm(1034.133) | 425nm/477.2nm(1662.114) | — |
| 组别 | 峰中心位置及荧光强度 | ||
|---|---|---|---|
| 峰A | 峰B | 峰C | |
| 0-LB(EPS) | 265nm/479.2nm(243.548) | 420nm/481nm(680.446) | 285nm/327nm(1563.432) |
| 0.5g-LB(EPS) | 265nm/479nm(110.41) | 410nm/478.2nm(308.793) | 285nm/333.8nm(752.269) |
| 1g-LB(EPS) | 265nm/476.8nm(83.829) | 410nm/479.8nm(229.394) | 285nm/334.2nm(739.401) |
| 2g-LB(EPS) | 280nm/431nm(62.354) | 405nm/469.4nm(145.001) | 285nm/331.4nm(549.932) |
| 4g-LB(EPS) | 285nm/477nm(54.834) | 410nm/474nm(159.905) | 285nm/331.4nm(544.004) |
| 8g-LB(EPS) | — | — | 280nm/309.4nm(418.391) |
| 0-TB(EPS) | 290nm/345.6nm(1808.071) | 425nm/475.8nm(2300.446) | — |
| 0.5g-TB(EPS) | 290nm/353.6nm(1069.614) | 425nm/474.2nm(2233.245) | — |
| 1g-TB(EPS) | 290nm/354.4nm(1463.342) | 425nm/475.2nm(2080.072) | — |
| 2g-TB(EPS) | 290nm/353.2nm(911.849) | 425nm/474.6nm(1782.129) | — |
| 4g-TB(EPS) | 290nm/350.8nm(1150.633) | 425nm/473.8nm(1669.835) | — |
| 8g-TB(EPS) | 290nm/355.4nm(1034.133) | 425nm/477.2nm(1662.114) | — |
| [1] | GAO Xinjie, ZHANG Liang, LIU Jinjin, et al. First application of the novel anaerobic/aerobic/anoxic (AOA) process for advanced nutrient removal in a wastewater treatment plant[J]. Water Research, 2024, 252: 121234. |
| [2] | ZHOU Ming, WANG Yantang, ZHU Lisha, et al. Sulfur-pyrite-limestone biological filter for simultaneous nitrogen and phosphorus removal from wastewater treatment plant effluent: Interaction mechanisms of autotrophic and heterotrophic denitrification[J]. Journal of Water Process Engineering, 2023, 56: 104301. |
| [3] | 雷雪艳, 晏雯雯, 张超, 等. 湿干比对不同人工快速渗滤系统处理厌氧折流板反应器出水的影响[J]. 江西冶金, 2023, 43(3): 259-264. |
| LEI Xueyan, YAN Wenwen, ZHANG Chao, et al. Effect of wet/dry ratio on anaerobic baffled reactor effluent treatment with different constructed rapid infiltration systems[J]. Jiangxi Metallurgy, 2023, 43(3): 259-264. | |
| [4] | ZUO Fumin, YUE Wenhui, GUI Shuanglin, et al. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox[J]. Bioresource Technology, 2023, 374: 128783. |
| [5] | ZHAO Qi, LI Jianwei, DENG Liyan, et al. From hybrid process to pure biofilm anammox process: Suspended sludge biomass management contributing to high-level anammox enrichment in biofilms[J]. Water Research, 2023, 236: 119959. |
| [6] | YUAN Quan, JIA Zhen, ROOTS Paul, et al. A strategy for fast anammox biofilm formation under mainstream conditions[J]. Chemosphere, 2023, 318: 137955. |
| [7] | SHAW Dario R, Muhammad ALI, KATURI Krishna P, et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria[J]. Nature Communications, 2020, 11(1): 2058. |
| [8] | 简志强, 周高婷, 龚斌, 等. 微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报, 2021, 11(5): 927-934. |
| JIAN Zhiqiang, ZHOU Gaoting, GONG Bin, et al. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 927-934. | |
| [9] | HE Xuejie, FAN Xing, CAO Meng, et al. Iron-electrolysis assisted anammox/denitrification system for intensified nitrate removal and phosphorus recovery in low-strength wastewater treatment[J]. Water Research, 2024, 253: 121312. |
| [10] | FENG Li, LI Jin, MA Haoran, et al. Effect of Fe(Ⅱ) on simultaneous marine anammox and feammox treating nitrogen-laden saline wastewater under low temperature: Enhanced performance and kinetics[J]. Desalination, 2020, 478: 114287. |
| [11] | YANG Biao, SUN Jiawei, WANG Zhongyu, et al. Sustainable biochar application in anammox process: Unveiling novel pathways for enhanced nitrogen removal and efficient start-up at low temperature[J]. Bioresource Technology, 2024, 402: 130773. |
| [12] | GUO Kehuan, LI Wenxuan, WANG Yae, et al. Low strength wastewater anammox start-up and stable operation by inoculating sponge-iron sludge: Cooperation of biological iron and iron bacteria[J]. Journal of Environmental Management, 2022, 322: 116086. |
| [13] | ZHANG Miao, LI Biao, WANG Dongbin, et al. New insights into iron enhancing anammox performance: Effects, mechanisms and potential applications[J]. Journal of Water Process Engineering, 2024, 61: 105363. |
| [14] | 周健, 完颜德卿, 黄勇, 等. ANAMMOX菌利用零价铁还原硝酸盐脱氮研究[J]. 环境科学, 2016, 37(11): 4302-4308. |
| ZHOU Jian, WANYAN Deqing, HUANG Yong, et al. Biotransformation of nitrate to nitrogen gas driven by ANAMMOX microbes via zero-valent iron under anaerobic conditions[J]. Environmental Science, 2016, 37(11): 4302-4308. | |
| [15] | 雷欣, 闫荣, 慕玉洁, 等. 铁元素对厌氧氨氧化菌脱氮效能的影响[J]. 化工进展, 2021, 40(5): 2730-2738. |
| LEI Xin, YAN Rong, MU Yujie, et al. Effect of iron on nitrogen removal efficiency of anaerobic ammonium oxidation bacteria[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2730-2738. | |
| [16] | CHEN Yao, JIA Fangxu, LIU Yingjie, et al. The effects of Fe(Ⅲ) and Fe(Ⅱ) on anammox process and the Fe-N metabolism[J]. Chemosphere, 2021, 285: 131322. |
| [17] | JIANG Yushi, CHEN Yuqi, WANG Ying, et al. Novel insight into the inhibitory effects and mechanisms of Fe(Ⅱ)-mediated multi-metabolism in anaerobic ammonium oxidation (anammox)[J]. Water Research, 2023, 242: 120291. |
| [18] | 周文永, 王京扬, 张艳萍. 氮负荷波动条件下Fe3+对厌氧氨氧化系统的影响[J]. 环境科学与技术, 2022, 45(5): 7-14. |
| ZHOU Wenyong, WANG Jingyang, ZHANG Yanping. Effect of Fe3+ on anammox system under fluctuating nitrogen load[J]. Environmental Science & Technology, 2022, 45(5): 7-14. | |
| [19] | 史天茜, 石永辉, 武新颖, 等. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
| SHI Tianxi, SHI Yonghui, WU Xinying, et al. Effects of Fe2+ on the performance of Anammox EGSB reactor[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. | |
| [20] | CHEN Yongxing, ZHANG Chuchu, CHEN Zhenguo, et al. Fe(Ⅱ)-driven spatiotemporal assembly of heterotrophic and anammox bacteria enhances simultaneous nitrogen and phosphorus removal for low-strength municipal wastewater[J]. Bioresource Technology, 2024, 401: 130713. |
| [21] | FENG Kun, LOU Yu, LI Yitian, et al. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria[J]. Journal of Hazardous Materials, 2023, 447: 130754. |
| [22] | LIU Xuerui, WANG Lixia, ZHENG Jinli, et al. Multi-omics analysis reveals the collaboration and metabolisms of the anammox consortia driven by soluble/non-soluble Fe(Ⅲ) as the sole iron element[J]. Journal of Environmental Management, 2024, 352: 120124. |
| [23] | FENG Cuijie, LOTTI Tommaso, CANZIANI Roberto, et al. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review[J]. Science of the Total Environment, 2021, 753: 142051. |
| [24] | YAN Yuan, WANG Yayi, WANG Weigang, et al. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition[J]. Water Research, 2019, 153: 284-294. |
| [25] | GAO Ran, JIN Hao, HAN Mengru, et al. Iron-mediated DAMO-anammox process: Revealing the mechanism of electron transfer[J]. Journal of Environmental Management, 2024, 356: 120750. |
| [26] | 周正, 刘凯, 王凡, 等. 磷酸盐对厌氧氨氧化活性污泥脱氮效能的影响[J]. 环境科学, 2017, 38(6): 2453-2460. |
| ZHOU Zheng, LIU Kai, WANG Fan, et al. Influence of phosphate on nitrogen removal efficiency of ANAMMOX sludge[J]. Environmental Science, 2017, 38(6): 2453-2460. | |
| [27] | ZHANG Xiaojing, ZHOU Yue, ZHAO Siyu, et al. Effect of Fe (Ⅱ) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter[J]. Chemosphere, 2018, 200: 412-418. |
| [28] | WANG Xiqing, Tao LYU, DONG Renjie, et al. Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation[J]. Bioresource Technology, 2021, 320: 124331. |
| [29] | GUO Beibei, CHEN Yuanhao, Lu LYU, et al. Transformation of the zero valent iron dosage effect on anammox after long-term culture: From inhibition to promotion[J]. Process Biochemistry, 2019, 78: 132-139. |
| [30] | YAO Zongbao, WANG Fang, WANG Chunliu, et al. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research International, 2019, 26(15): 15084-15094. |
| [31] | 杨杰源, 朱易春, 赖雅芬, 等. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108. |
| YANG Jieyuan, ZHU Yichun, LAI Yafen, et al. Effect of low intensity ultrasound on operation performance of high load Anammox-EGSB reactor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1098-1108. | |
| [32] | PENG Mengwen, QI Jing, YAN Peng, et al. Insight into the structure and metabolic function of iron-rich nanoparticles in anammox bacteria[J]. Science of the Total Environment, 2022, 806: 150879. |
| [33] | MAALCKE Wouter J, REIMANN Joachim, DE VRIES Simon, et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle[J]. Journal of Biological Chemistry, 2016, 291(33): 17077-17092. |
| [1] | TIAN Qing, LIU Qingmeng, LI Fang, YANG Bo, ZHANG Siyuan, GUAN Ziliang. Regulation of salt tolerance in bacteria and its application in hypersaline BNR process [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 465-476. |
| [2] | ZHAO Xingcheng, JIA Fangxu, LIU Chenyu, HAN Baohong, MEI Ning, YAO Hong. Biofilm attachment performances and microbial communities of the carriers in full-scale PN/A process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5242-5249. |
| [3] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
| [4] | GE Sijie, YANG Daxin, LYU Jun, WANG Zhen, ZHANG Chuanyi, ZHANG Wenhua. Simultaneous nitrogen and phosphorus removal and microbial community structure under autotrophic denitrification driven by complex sulfur substrate [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2135-2143. |
| [5] | HAI Yan, ZHOU Xin, LI Yan. Rapid start-up performance of mainstream Anammox in a single-stage fixed-bed biofilm reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2201-2209. |
| [6] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
| [7] | YANG Jieyuan, ZHU Yichun, LAI Yafen, ZHANG Chao, TIAN Shuai, XIE Ying. Effect of low intensity ultrasound on operation performance of high load Anammox-EGSB reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1098-1108. |
| [8] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
| [9] | XIE Shuting, DAI Wei. Rapid start-up and enhancement of simultaneous nitrification-denitrification phosphorus removal granular sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5976-5983. |
| [10] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
| [11] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
| [12] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
| [13] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
| [14] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
| [15] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |