Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3101-3111.DOI: 10.16085/j.issn.1000-6613.2024-1486
• Special column: Frontiers of interdisciplinary technologies in chemical engineering and environmental sciences • Previous Articles
WANG Yuhao(
), JIANG Qinli, XU Ximeng(
)
Received:2024-09-09
Revised:2024-10-11
Online:2025-07-08
Published:2025-06-25
Contact:
XU Ximeng
通讯作者:
徐西蒙
作者简介:王御豪(2000—),男,硕士研究生,研究方向为水体新兴污染物处理技术。E-mail:20222210109@stu.kust.edu.cn。
基金资助:CLC Number:
WANG Yuhao, JIANG Qinli, XU Ximeng. Degradation of organic pollutants via non-radical pathway by surface modified FeOCl activating persulfate[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3101-3111.
王御豪, 蒋沁利, 徐西蒙. 表面修饰FeOCl活化过硫酸盐引发有机污染物非自由基降解[J]. 化工进展, 2025, 44(6): 3101-3111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1486
| 污染物名称 | 体积分数/% | 检测波长/nm | 流速/mL·min-1 | 进样时间/min | |||
|---|---|---|---|---|---|---|---|
| 乙腈 | 甲醇 | 乙酸(1%)-水溶液 | 水 | ||||
| SMX | 40 | — | 60 | — | 264 | 1 | 5.5 |
| ACT | 15 | — | 85 | — | 254 | 1 | 7 |
| BPA | — | 75 | — | 25 | 225 | 1 | 6 |
| BPS | — | 55 | 45 | — | 258 | 0.8 | 5.5 |
| IBU | — | 80 | 20 | — | 220 | 1 | 7 |
| ATZ | — | 70 | — | 30 | 225 | 1 | 6 |
| CBZ | 60 | — | — | 40 | 286 | 1 | 5.5 |
| 2.4-DCP | 60 | — | 40 | — | 284 | 1 | 7 |
| PMSO | 28 | — | — | 72 | 215 | 1 | 8.5 |
| PMSO2 | 25 | — | — | 75 | 230 | 1 | 10 |
| 污染物名称 | 体积分数/% | 检测波长/nm | 流速/mL·min-1 | 进样时间/min | |||
|---|---|---|---|---|---|---|---|
| 乙腈 | 甲醇 | 乙酸(1%)-水溶液 | 水 | ||||
| SMX | 40 | — | 60 | — | 264 | 1 | 5.5 |
| ACT | 15 | — | 85 | — | 254 | 1 | 7 |
| BPA | — | 75 | — | 25 | 225 | 1 | 6 |
| BPS | — | 55 | 45 | — | 258 | 0.8 | 5.5 |
| IBU | — | 80 | 20 | — | 220 | 1 | 7 |
| ATZ | — | 70 | — | 30 | 225 | 1 | 6 |
| CBZ | 60 | — | — | 40 | 286 | 1 | 5.5 |
| 2.4-DCP | 60 | — | 40 | — | 284 | 1 | 7 |
| PMSO | 28 | — | — | 72 | 215 | 1 | 8.5 |
| PMSO2 | 25 | — | — | 75 | 230 | 1 | 10 |
| 单因素条件 | 变量 | kobs/min-1 | R2 |
|---|---|---|---|
| PMS投加浓度 | 0.5mmol/L | 0.0485 | 0.9932 |
| 1mmol/L | 0.0672 | 0.9929 | |
| 2mmol/L | 0.1457 | 0.9939 | |
| 4mmol/L | 0.2599 | 0.9763 | |
| 8mmol/L | 0.1852 | 0.9818 | |
| 初始pH | 3.0 | 0.1684 | 0.9938 |
| 5.0 | 0.1542 | 0.9943 | |
| 7.0 | 0.1457 | 0.9939 | |
| 8.0 | 0.0488 | 0.9998 | |
| 10.0 | 1.2322 | 0.9999 | |
| NTPA-FeOCl投加量 | 0.1g/L | 0.0451 | 0.9992 |
| 0.2g/L | 0.1457 | 0.9939 | |
| 0.3g/L | 0.1917 | 0.9776 | |
| 0.4g/L | 0.2882 | 0.9944 | |
| 0.5g/L | 0.4674 | 0.9698 |
| 单因素条件 | 变量 | kobs/min-1 | R2 |
|---|---|---|---|
| PMS投加浓度 | 0.5mmol/L | 0.0485 | 0.9932 |
| 1mmol/L | 0.0672 | 0.9929 | |
| 2mmol/L | 0.1457 | 0.9939 | |
| 4mmol/L | 0.2599 | 0.9763 | |
| 8mmol/L | 0.1852 | 0.9818 | |
| 初始pH | 3.0 | 0.1684 | 0.9938 |
| 5.0 | 0.1542 | 0.9943 | |
| 7.0 | 0.1457 | 0.9939 | |
| 8.0 | 0.0488 | 0.9998 | |
| 10.0 | 1.2322 | 0.9999 | |
| NTPA-FeOCl投加量 | 0.1g/L | 0.0451 | 0.9992 |
| 0.2g/L | 0.1457 | 0.9939 | |
| 0.3g/L | 0.1917 | 0.9776 | |
| 0.4g/L | 0.2882 | 0.9944 | |
| 0.5g/L | 0.4674 | 0.9698 |
| [1] | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
| [2] | DUAN Xiaoguang, SUN Hongqi, SHAO Zongping, et al. Nonradical reactions in environmental remediation processes: Uncertainty and challenges[J]. Applied Catalysis B: Environmental, 2018, 224: 973-982. |
| [3] | LIANG Jun, DUAN Xiaoguang, XU Xiaoyun, et al. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(Ⅳ) versus surface-mediated electron transfer[J]. Environmental Science & Technology, 2021, 55(14): 10077-10086. |
| [4] | LIU Lindong, LIU Qian, WANG Ying, et al. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization[J]. Applied Catalysis B: Environmental, 2019, 254: 166-173. |
| [5] | YAN Yiqi, WEI Zongsu, DUAN Xiaoguang, et al. Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes[J]. Environmental Science & Technology, 2023, 57(33): 12153-12179. |
| [6] | DOU Jibo, CHENG Jie, LU Zhijiang, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process[J]. Applied Catalysis B: Environmental, 2022, 301: 120832. |
| [7] | WANG Jinling, HOU Kaipeng, WEN Yuzhen, et al. Interlayer structure manipulation of iron oxychloride by potassium cation intercalation to steer H2O2 activation pathway[J]. Journal of the American Chemical Society, 2022, 144(10): 4294-4299. |
| [8] | MA Yahui, WANG Dalin, XU Yin, et al. Nonradical electron transfer-based peroxydisulfate activation by a Mn-Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A[J]. Journal of Hazardous Materials, 2022, 436: 129172. |
| [9] | WU Que, ZHANG Yongqing, MENG Hong, et al. Cu/N co-doped biochar activating PMS for selective degrading paracetamol via a non-radical pathway dominated by singlet oxygen and electron transfer[J]. Chemosphere, 2024, 357: 141858. |
| [10] | YIN Yue, Ruolin LYU, ZHANG Weiming, et al. Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment[J]. Applied Catalysis B: Environmental, 2021, 295: 120282. |
| [11] | 王金岭, 温玉真, 汪华林, 等. FeOCl层状材料及其插层化合物: 结构、 性质与应用[J]. 化学进展, 2021, 33(2): 263-280. |
| WANG Jinling, WEN Yuzhen, WANG Hualin, et al. FeOCl and its intercalation compounds: Structures, properties and applications[J]. Progress in Chemistry, 2021, 33(2): 263-280. | |
| [12] | YANG Xuejing, XU Ximeng, XU Jing, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. |
| [13] | XU Ximeng, ZHANG Shujing, WANG Yuhao, et al. 2D Surfaces twisted to enhance electron freedom toward efficient advanced oxidation processes[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123701. |
| [14] | 杨本谱. 铁(Ⅲ)-邻菲罗啉光化还原分光光度法测定铁[J]. 冶金分析, 1990, 10(4): 53-54. |
| YANG Benpu. Photoreduction spectrophotometric determination of iron (Ⅲ) with phenanthroline[J]. Metallurgical Analysis, 1990, 10(4): 53-54. | |
| [15] | BECHAMBI Olfa, JLAIEL Lobna, NAJJAR Wahiba, et al. Photocatalytic degradation of bisphenol A in the presence of Ce-ZnO: Evolution of kinetics, toxicity and photodegradation mechanism[J]. Materials Chemistry and Physics, 2016, 173: 95-105. |
| [16] | LI Yan, ZHANG Han, RASHID Azhar, et al. Bisphenol A attenuation in natural microcosm: Contribution of ecological components and identification of transformation pathways through stable isotope tracing[J]. Journal of Hazardous Materials, 2020, 385: 121584. |
| [17] | GAO Kaihua, CHEN Jitao, LIU Zhongmin, et al. Intensified redox co-conversion of As(Ⅲ) and Cr(Ⅵ) with MIL-125(Ti)-derived COOH functionalized TiO2: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 360: 1223-1232. |
| [18] | ZHANG Xiaodong, YUE Ke, RAO Renzhi, et al. Synthesis of acidic MIL-125 from plastic waste: Significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene[J]. Applied Catalysis B: Environmental, 2022, 310: 121300. |
| [19] | 周宇辉, 林洋仟, 王御豪, 等. 磁性复合材料活化过硫酸盐去除水中双酚A[J]. 中国环境科学, 2024, 44(2): 832-840. |
| ZHOU Yuhui, LIN Yangqian, WANG Yuhao, et al. Removing bisphenol A with magnetic sandwich composite activated peroxymonosulfate[J]. China Environmental Science, 2024, 44(2): 832-840. | |
| [20] | XU Ximeng, ZONG Shaoyan, CHEN Weiming, et al. Comparative study of bisphenol A degradation via heterogeneously catalyzed H2O2 and persulfate: Reactivity, products, stability and mechanism[J]. Chemical Engineering Journal, 2019, 369: 470-479. |
| [21] | XU Ximeng, CHEN Weiming, ZONG Shaoyan, et al. Magnetic clay as catalyst applied to organics degradation in a combined adsorption and Fenton-like process[J]. Chemical Engineering Journal, 2019, 373: 140-149. |
| [22] | QI Chengdu, LIU Xitao, MA Jun, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. |
| [23] | LEI Yu, YU Yafei, LEI Xin, et al. Assessing the use of probes and quenchers for understanding the reactive species in advanced oxidation processes[J]. Environmental Science & Technology, 2023, 57(13): 5433-5444. |
| [24] | GARAVELLI Marco, BERNARDI Fernando, OLIVUCCI Massimo, et al. DFT study of the reactions between singlet-oxygen and a carotenoid model[J]. Journal of the American Chemical Society, 1998, 120(39): 10210-10222. |
| [25] | HUANG Bingkun, REN Xinyi, ZHAO Jian, et al. Modulating electronic structure engineering of atomically dispersed cobalt catalyst in Fenton-like reaction for efficient degradation of organic pollutants[J]. Environmental Science & Technology, 2023, 57(37): 14071-14081. |
| [26] | FANG Qianzhen, YANG Hailan, YE Shujing, et al. Generation and identification of 1O2 in catalysts/peroxymonosulfate systems for water purification[J]. Water Research, 2023, 245: 120614. |
| [27] | BI Guangyu, DING Rongrong, SONG Junsheng, et al. Discriminating the active Ru species towards the selective generation of singlet oxygen from peroxymonosulfate: Nanoparticles surpass single-atom catalysts[J]. Angewandte Chemie, 2024, 136(17): 2401551. |
| [28] | WANG Zhen, QIU Wei, PANG Suyan, et al. Further understanding the involvement of Fe(Ⅳ) in peroxydisulfate and peroxymonosulfate activation by Fe(Ⅱ) for oxidative water treatment[J]. Chemical Engineering Journal, 2019, 371: 842-847. |
| [29] | YAO Jiayi, WU Nannan, TANG Xiaosheng, et al. Methyl phenyl sulfoxide (PMSO) as a quenching agent for high-valent metal-oxo species in peroxymonosulfate based processes should be reconsidered[J]. Chemical Engineering Journal Advances, 2022, 12: 100378. |
| [30] | Wen-Da OH, DONG Zhili, Teik-Thye LIM. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. |
| [31] | HU Jian, ZENG Xiangkang, WANG Gen, et al. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 400: 125869. |
| [32] | YAO Yiyuan, WANG Chaohai, YAN Xin, et al. Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants[J]. Environmental Science & Technology, 2022, 56(12): 8833-8843. |
| [33] | WU Zelin, XIONG Zhaokun, LIU Wen, et al. Active center size-dependent Fenton-like chemistry for sustainable water decontamination[J]. Environmental Science & Technology, 2023, 57(50): 21416-21427. |
| [1] | LI Yanan, GUO Kai, WANG Jiaqi, WU Yaning. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. |
| [2] | ZENG Xiangchu, NING Haichao, WU Zhe, WEI Ruisong, YIN Xiuju. Coupled homogeneous/heterogeneous Fenton-like system for enhanced inactivating of tetracycline-resistance Salmonella typhi [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7078-7094. |
| [3] | MA Chao, SUN Zhihua, WANG Lei, JI Yu, CHEN Cuizhong, WANG Jiankang, ZHAO Chun. Degradation of reactive yellow K-RN by electricity/potassium permanganate/peroxymonosulfate system and its mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5958-5968. |
| [4] | JI Qinghao, FAN Tingting, WANG Chunmei. Preparation and photocatalytic decolorization performance of MIL-100(FeⅡ/FeⅢ)/ACF composites [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5913-5921. |
| [5] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
| [6] | PAN Jie, WANG Mingxin, GAO Shengwang, XIA Xunfeng, HAN Xue. Nitrogen-sulfur doped biochar/permonosulfate for degradation of sulfisoxazole in water [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4204-4212. |
| [7] | ZHEN Jianzheng, NIE Shisong, PAN Shiyuan, LYU Weiyang, YAO Yuyuan. Research progress on advanced activation of peroxymonosulfate by multidimensional carbon-supported metal catalyst for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1858-1872. |
| [8] | XU Zetao, CAO Yiting, WANG Qiao, WANG Zhihong. Research progress of peroxymonosulfate activated by solid-phase cobalt-based catalyst in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 730-739. |
| [9] | LYU Peng, HE Changfan, HE Lin, LI Xingang, SUI Hong. Degradation characteristics and enhancement mechanism of heavy oily sludge by heterogeneous oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6149-6157. |
| [10] | XUE Yuwei, YE Xiaozhen, ZENG Jing, WANG Yongquan, HONG Junming. Pretreatment of tobacco sugar flavoring wastewater by nano layered iron-manganese bimetallic catalysts activating peroxymonosulfate [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5661-5668. |
| [11] | Yuqing ZHANG, Xiulan SONG, Pei BI. Effects of pH on the production of short-chain fatty acids from waste activated sludge enhanced by potassium peroxymonosulfate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3786-3793. |
| [12] | Jie XU, Shiqian GAO, Jing XIA, Ke ZHANG, Zichun SHAO, Lanjing WANG, Yongjing TIAN. Activatoin of peroxymonosulfate by Sr-doped LaCo0.5Cu0.5O3 perovskite [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3525-3534. |
| [13] | Peng SUN, Kaikai ZHANG, Yu ZHANG, Yanrong ZHANG. Simultaneous removal of Cu2+ and p-nitroaniline from aqueous solution by biochar/peroxymonosulfate system [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4268-4274. |
| [14] | Yiping CHEN, Guanshang XIA, Chaohong ZHENG, Si WU. Degradation of ciprofloxacin by advanced oxidation process with carbon nanotubes/peroxymonosulfate [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2037-2045. |
| [15] | GU Zhenchuan, GAO Naiyun, AN Na, CHEN Juxiang. Chloride ion activate peroxymonosulfate for degradation of trimethoprim in aqueous solution [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1992-1998. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |