Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 1834-1848.DOI: 10.16085/j.issn.1000-6613.2024-1759
• Special column:Measurement techniques for multiphase flow • Previous Articles Next Articles
SHI Xuewei(
), TAN Chao, DONG Feng
Received:2024-10-31
Revised:2025-02-26
Online:2025-05-07
Published:2025-04-25
Contact:
SHI Xuewei
通讯作者:
史雪薇
作者简介:史雪薇(1992—),女,博士,副研究员,硕士生导师,研究方向为多相流检测技术及装置。E-mail:shixuewei@tju.edu.cn。
基金资助:CLC Number:
SHI Xuewei, TAN Chao, DONG Feng. Oil-gas-water three-phase flow pattern identification based on multi-mode ultrasonic signal analysis[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1834-1848.
史雪薇, 谭超, 董峰. 油气水三相流多模式超声测试信号分析与流型辨识[J]. 化工进展, 2025, 44(4): 1834-1848.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1759
| 序号 | 样本总量 | 被正确分类的样本量 | 准确率/% |
|---|---|---|---|
| 1 | 61 | 60 | 98.4 |
| 2 | 61 | 58 | 95.1 |
| 3 | 61 | 59 | 96.7 |
| 4 | 61 | 60 | 98.4 |
| 5 | 61 | 58 | 95.1 |
| 6 | 61 | 58 | 95.1 |
| 7 | 61 | 58 | 95.1 |
| 8 | 61 | 61 | 100 |
| 9 | 61 | 58 | 95.1 |
| 10 | 61 | 59 | 96.7 |
| 序号 | 样本总量 | 被正确分类的样本量 | 准确率/% |
|---|---|---|---|
| 1 | 61 | 60 | 98.4 |
| 2 | 61 | 58 | 95.1 |
| 3 | 61 | 59 | 96.7 |
| 4 | 61 | 60 | 98.4 |
| 5 | 61 | 58 | 95.1 |
| 6 | 61 | 58 | 95.1 |
| 7 | 61 | 58 | 95.1 |
| 8 | 61 | 61 | 100 |
| 9 | 61 | 58 | 95.1 |
| 10 | 61 | 59 | 96.7 |
| 1 | THORN Richard, JOHANSEN Geir Anton, HAMMER Erling. Recent developments in three-phase flow measurement[J]. Measurement Science and Technology, 1997, 8(7): 691-701. |
| 2 | 谭超, 董峰. 多相流过程参数检测技术综述[J]. 自动化学报, 2013, 39(11): 1923-1932. |
| TAN Chao, DONG Feng. Parameters measurement for multiphase flow process[J]. Acta Automatica Sinica, 2013, 39(11): 1923-1932. | |
| 3 | 史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648. |
| SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. | |
| 4 | SALGADO W L, DAM R S F, SALGADO C M. Optimization of a flow regime identification system and prediction of volume fractions in three-phase systems using gamma-rays and artificial neural network[J]. Applied Radiation and Isotopes, 2021, 169: 109552. |
| 5 | LIU Weiling, TAN Chao, DONG Feng. Doppler spectrum analysis and flow pattern identification of oil-water two-phase flow using dual-modality sensor[J]. Flow Measurement and Instrumentation, 2021, 77: 101861. |
| 6 | ZHAI Lusheng, WANG Yuqing, YANG Jie, et al. Visualization of vertical oil-water-gas flows using conductance compensated wire-mesh sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 7500516. |
| 7 | WANG Qiang, WANG Mi, WEI Kent, et al. Visualization of gas-oil-water flow in horizontal pipeline using dual-modality electrical tomographic systems[J]. IEEE Sensors Journal, 2017, 17(24): 8146-8156. |
| 8 | LIANG Fachun, HANG Yue, YU Hao, et al. Identification of gas-liquid two-phase flow patterns in a horizontal pipe based on ultrasonic echoes and RBF neural network[J]. Flow Measurement and Instrumentation, 2021, 79: 101960. |
| 9 | SHI Xuewei, DONG Feng, TAN Chao. Horizontal oil-water two-phase flow characterization and identification with pulse-wave ultrasonic Doppler technique[J]. Chemical Engineering Science, 2021, 246: 117015. |
| 10 | 张立峰, 王智. 基于多域特征提取的气液两相流流型识别[J]. 计量学报, 2023, 44(10): 1509-1516. |
| ZHANG Lifeng, WANG Zhi. Gas-liquid two-phase flow pattern recognition based on multi-domain feature extraction[J]. Acta Metrologica Sinica, 2023, 44(10): 1509-1516. | |
| 11 | WANG Z Y, JIN N D, GAO Z K, et al. Nonlinear dynamical analysis of large diameter vertical upward oil-gas-water three-phase flow pattern characteristics[J]. Chemical Engineering Science, 2010, 65(18): 5226-5236. |
| 12 | SUN Bo, CHANG He, ZHOU Yunlong. Flow regime recognition and dynamic characteristics analysis of air-water flow in horizontal channel under nonlinear oscillation based on multi-scale entropy[J]. Entropy, 2019, 21(7): 667. |
| 13 | 周云龙, 王圣博, 刘起超. 基于ICEEMDAN和SVM的起伏振动气液两相流流型识别[J]. 热能动力工程, 2024, 39(2): 109-116. |
| ZHOU Yunlong, WANG Shengbo, LIU Qichao. Flow pattern identification of fluctuating vibration gas-liquid two-phase flow based on ICEEMDAN and SVM[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(2): 109-116. | |
| 14 | XU Qiang, LI Xiangyu, JIANG Shuaizhi, et al. Features selection for recognition of severe slugging in a long pipeline with an S-shaped riser by decision tree[J]. Flow Measurement and Instrumentation, 2024, 96: 102537. |
| 15 | QUINTINO André Mendes, NAVARRO DA ROCHA Davi Lôtfi Lavôr, FONSECA Júnior Roberto, et al. Flow pattern transition in pipes using data-driven and physics-informed machine learning[J]. Journal of Fluids Engineering, 2021, 143(3): 031401. |
| 16 | LI Chaofan, SONG Yajing, XU Long, et al. Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning[J]. Energy, 2022, 242: 122990. |
| 17 | 苏茜, 夏志飞, 刘振兴. 基于RBF的油气水段塞流流型超声识别方法[J]. 化工进展, 2024, 43(2): 628-636. |
| SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. | |
| 18 | AÇIKGÖZ M, FRANÇA F, LAHEY JR R T. An experimental study of three-phase flow regimes[J]. International Journal of Multiphase Flow, 1992, 18(3): 327-336. |
| 19 | WEGMANN Adrian, MELKE Julia, RUDOLF VON ROHR Philipp. Three phase liquid-liquid-gas flows in 5.6mm and 7mm inner diameter pipes[J]. International Journal of Multiphase Flow, 2007, 33(5): 484-497. |
| 20 | MUKHERJEE Tanumoy, Gargi DAS, Subhabrata RAY. Sensor-based flow pattern detection gas-liquid-liquid upflow through a vertical pipe[J]. AIChE Journal, 2014, 60(9): 3362-3375. |
| 21 | GAO Zhongke, JIN Ningde. Nonlinear characterization of oil-gas-water three-phase flow in complex networks[J]. Chemical Engineering Science, 2011, 66(12): 2660-2671. |
| 22 | GAO Zhongke, DU Meng, HU Lidan, et al. Visibility graphs from experimental three-phase flow for characterizing dynamic flow behavior[J]. International Journal of Modern Physics C, 2012, 23(10): 1250069. |
| 23 | LI Zhao, TAN Chao, ZHANG Shumei, et al. Global-local state analysis and monitoring-based velocity measurement of oil-gas-water three-phase flow[J]. Chemical Engineering Journal, 2024, 497: 154759. |
| 24 | SPEDDING P L, DONNELLY G F, COLE J S. Three phase oil-water-gas horizontal co-current flow Ⅰ. Experimental and regime map[J]. Chemical Engineering Research and Design, 2005, 83(4): 401-411. |
| 25 | ZHANG Lifeng, WANG Zhi, WU Sicheng. Gas-liquid flow behavior analysis based on phase-amplitude coupling and ERT[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4502410. |
| 26 | KINSLER Lawrence E, FREY Austin R, COPPENS Alan B, SANDERS James V. Fundamentals of acoustics[M]. 4th ed. New York: John Wiley & Sons Inc., 2000. |
| 27 | 张俊哲. 无损检测技术及其应用[M]. 2版. 北京: 科学出版社, 2010. |
| ZHANG Junzhe. None-destructive testing technology and applications[M]. 2nd ed. Beijing: Science Press, 2010. | |
| 28 | DONG Xiaoxiao, TAN Chao, DONG Feng. Gas-liquid two-phase flow velocity measurement with continuous wave ultrasonic Doppler and conductance sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(11): 3064-3076. |
| 29 | SHI Xuewei, TAN Chao, WU Hao, et al. An electrical and ultrasonic Doppler system for industrial multiphase flow measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 7500313. |
| 30 | TRALLERO J L, SARICA Cem, BRILL J P. A study of oil-water flow patterns in horizontal pipes[J]. SPE Production & Facilities, 1997, 12(3): 165-172. |
| 31 | 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程[M]. 3版. 北京: 高等教育出版社, 2020. |
| MAO Shisong, CHENG Yiming, PU Xiaolong. Probability and mathematical statistics tutorial[M]. 3rd ed. Beijing: Higher Education Press, 2020. | |
| 32 | WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. |
| 33 | 陈思睿, 毕景良, 王雷, 等. 气液两相流流型特征无监督提取的卷积自编码器: 机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
| CHEN Sirui, BI Jingliang, WANG Lei, et al. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: Principle and application[J]. CIESC Journal, 2024, 75(3): 847-857. | |
| 34 | HE Haikang, ZHOU Ziqiang, SUN Baojiang, et al. Study on the prediction method of oil-water two-phase flow pattern and oil holdup[J]. Geoenergy Science and Engineering, 2025, 246: 213627. |
| [1] | GUO Wei, LIU Chuanping, TONG Lige, WANG Li. Novel thermal diffusion measurement technique for enhanced monitoring of gas-liquid multiphase flows [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1781-1785. |
| [2] | SU Qian, BAI Fan, LIU Zhenxing, LIU Zhang. Ultrasonic identification of gas-liquid two-phase flow patterns based on XGBoost [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1786-1793. |
| [3] | LI Linghan, ZHANG Shumei, DONG Feng. State identification of gas-liquid two-phase flow in few-shot scenario [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1794-1805. |
| [4] | CHEN Nuoheng, WANG Shengnan, KONG Ming. Multi-frequency electrical capacitance-based circuit design for online measurement of gas-solid phase fraction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1806-1814. |
| [5] | LI Jinxia, RU Haoran, LIU Wenkai, SUN Hongjun, DING Hongbing. Physical-guided neural network based on three-fluid model for disturbance wave velocity prediction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1815-1824. |
| [6] | SUN Mingcong, QIN Qing, WANG Yanhan, ZHAO Ning, YAN Xiaoli. Interfacial wave velocity prediction model of vertical annular flow based on ensemble learning [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1849-1858. |
| [7] | WANG Yan, FENG Zhi, ZHANG Zhengyang, WU Hao, ZHANG Wenyu, YANG Lulu, ZHANG Wenshuo, YU Qinqin, LIU Wei, WANG Jinqing, KONG Ming. 3D morphology measurement method for droplets evaporation process based on LED off-axis digital holography [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1867-1875. |
| [8] | ZHAO Tiannan, ZHAO Chang, SUN Hao, LU Jianmin, YANG Huinan. Frozen droplets height measurement system based on absorption spectroscopy [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1907-1912. |
| [9] | WANG Hao, MA Liuhao, DU Jianguo, ZHOU Chen, WANG Wei, WANG Wei, WANG Yu. Measurement for trace-level methane-ammonia binary fuel slip in high-humidity flue gases based on frequency-division multiplexing laser absorption spectroscopy [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1913-1922. |
| [10] | ZOU Zao, TIAN Chang, SU Mingxu, YIN Huamo, QU Yanyang, HE Guansong. Image processing method of HMX molding powders based on improved Swin Transformer [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1957-1967. |
| [11] | YUE Lei, LI Peilong, DING Zhan, XIA Lei, AN Linyu. Research progress on characterization methods of diffusion behavior of asphalt rejuvenators [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2068-2080. |
| [12] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [13] | LI Jiahao, FAN Haiming, WEI Zhiyi, CHENG Siyuan. Research progress and prospects of nanomaterials in low-permeability reservoirs [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1485-1495. |
| [14] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
| [15] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |