Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6711-6722.DOI: 10.16085/j.issn.1000-6613.2023-2122

• Energy processes and technology • Previous Articles    

Simulation of air-cooling thermal management unit based on 280A·h prismatic energy storage battery packs

KANG Fangming1(), SU Qingzong2, WANG Yaxiong1,3()   

  1. 1.School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
    2.School of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
    3.Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou 014010, Inner Mongolia, China
  • Received:2023-12-01 Revised:2024-06-11 Online:2025-01-11 Published:2024-12-15
  • Contact: WANG Yaxiong

基于280A·h方块电池组风冷热管理单元的仿真研究

康芳明1(), 苏庆宗2, 王亚雄1,3()   

  1. 1.内蒙古科技大学化学与化工学院,内蒙古 包头 014010
    2.内蒙古科技大学机械工程学院,内蒙古 包头 014010
    3.内蒙古自治区煤化工与煤炭综合利用重点实验室,内蒙古 包头 014010
  • 通讯作者: 王亚雄
  • 作者简介:康芳明(1995—),女,硕士研究生,研究方向为热管理技术。E-mail:1431330248@qq.com
  • 基金资助:
    内蒙古自治区关键技术攻关计划(2021GG0043);内蒙古自治区科技计划(2023SKYPT0017)

Abstract:

A novel air-cooling thermal management unit based on 280A·h high-capacity battery with micro-porous plate was developed and simulated by ANSYS Fluent. The "U"-type air duct was selected to investigate the temperature and velocity distributions of the battery packs with or without porous plate, and with different porous plate thicknesses, air velocities, ambient temperatures and discharge rates. The results showed that the addition of porous plate effectively improved the velocity distribution and enhanced the temperature uniformity of battery packs, and increasing the thickness significantly reduced the maximum temperature. Increasing air velocity could reduce the maximum temperature and balance the inside temperature difference of the battery packs. In addition, when the thickness was 6mm, the discharge rate was 1C, the air speed was 10m/s and the ambient temperature was 25℃, the maximum temperature was 36.51℃ and the maximum temperature difference was only 1.55℃. This novel micro-porous plate type air-cooled thermal management unit was able to quickly remove the heat generated in battery packs operated under high current, thus significantly improving the service life and the safety and reliability of the energy storage battery packs.

Key words: computational fluid dynamics, air-cooling, micro channels, turbulent flow, battery thermal management, convective heat transfer, numerical simulation

摘要:

基于280A·h大容量储能电池所开发一种新型微多孔板风冷热管理单元,通过仿真软件ANSYS Fluent对比研究“Z”型和“U”型风道结构对电池热管理单元热性能的影响。最终选定以“U”型风道结构探究有无多孔板,不同多孔板厚度、入口风速、环境温度以及放电倍率下电池组温度场和流场分布。结果表明,添加多孔板可有效优化流量分布,提升电池组内部温度分布均匀性;增加多孔板厚度,电池组最高温度显著降低;增大风速可显著改善电池组最高温度和平衡电池组内部温差;电池组最高温度和最大温差均与放电倍率呈现正相关。此外,当多孔板厚度6mm、放电倍率1C、风速为10m/s、环境温度25℃时,电池组最高温度为36.51℃,最大温差仅为1.55℃,工作性能最佳。本文所开发的新型微多孔板风冷热管理单元能够快速释放方块状电池大倍率工作时产生的热量,从而显著提升储能电池组的使用寿命和安全可靠性。

关键词: 计算流体力学, 风冷, 微通道, 湍流, 电池热管理, 对流传热, 数值模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd