Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 581-589.DOI: 10.16085/j.issn.1000-6613.2024-0716
• Resources and environmental engineering • Previous Articles Next Articles
LI Lei(), ZHAO Yanmin, TIAN Haiyang, LI Jiangwei, ZHOU Qiang, HE Jiani, WU Wanyue
Received:
2024-04-28
Revised:
2024-06-04
Online:
2024-12-06
Published:
2024-11-20
Contact:
LI Lei
李磊(), 赵宴民, 田海洋, 李江伟, 周强, 何佳妮, 武琬越
通讯作者:
李磊
作者简介:
李磊(1982—),男,博士,高级工程师,研究方向为烟气CO2捕集利用。E-mail:lilei20150620@yeah.net。
基金资助:
CLC Number:
LI Lei, ZHAO Yanmin, TIAN Haiyang, LI Jiangwei, ZHOU Qiang, HE Jiani, WU Wanyue. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589.
李磊, 赵宴民, 田海洋, 李江伟, 周强, 何佳妮, 武琬越. 燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J]. 化工进展, 2024, 43(S1): 581-589.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0716
烟气中污染物成分 (标准状态,干基,体积分数)/% | 温度 /℃ | 压力(绝对) /kPa | |||||
---|---|---|---|---|---|---|---|
NO x | SO2 | CO2 | O2 | N2 | |||
0.00169 | 0.000046 | 2.86 | 16.77 | 80.37 | 40 | 145 |
烟气中污染物成分 (标准状态,干基,体积分数)/% | 温度 /℃ | 压力(绝对) /kPa | |||||
---|---|---|---|---|---|---|---|
NO x | SO2 | CO2 | O2 | N2 | |||
0.00169 | 0.000046 | 2.86 | 16.77 | 80.37 | 40 | 145 |
参数 | MEA+H2O | MDEA+MEA+H2O | |||||||
---|---|---|---|---|---|---|---|---|---|
原料气 (烟气) | 净化气 | 解吸气 | 吸收剂(贫液) | 吸收剂 (富液) | 净化气 | 解吸气 | 吸收剂(贫液) | 吸收剂(富液) | |
流量/m3∙h-1 | 46149.7 | 46172.7 | 1302.2 | 60 | 61.48 | 46566.5 | 1282.9 | 65 | 66.2 |
温度/℃ | 40 | 49.4 | 40 | 40 | 41.92 | 49.2 | 40 | 40 | 41.78 |
压力(绝对)/kPa | 110 | 101.3 | 130 | 180 | 110 | 101.3 | 130 | 180 | 110 |
主组分摩尔分数(CO2)/% | 2.86 | 0.246 | 92.1 | 0.028 | 0.05 | 0.277 | 92.1 | 0.027 | 0.057 |
参数 | MEA+H2O | MDEA+MEA+H2O | |||||||
---|---|---|---|---|---|---|---|---|---|
原料气 (烟气) | 净化气 | 解吸气 | 吸收剂(贫液) | 吸收剂 (富液) | 净化气 | 解吸气 | 吸收剂(贫液) | 吸收剂(富液) | |
流量/m3∙h-1 | 46149.7 | 46172.7 | 1302.2 | 60 | 61.48 | 46566.5 | 1282.9 | 65 | 66.2 |
温度/℃ | 40 | 49.4 | 40 | 40 | 41.92 | 49.2 | 40 | 40 | 41.78 |
压力(绝对)/kPa | 110 | 101.3 | 130 | 180 | 110 | 101.3 | 130 | 180 | 110 |
主组分摩尔分数(CO2)/% | 2.86 | 0.246 | 92.1 | 0.028 | 0.05 | 0.277 | 92.1 | 0.027 | 0.057 |
参数 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | |||||||
---|---|---|---|---|---|---|---|---|---|
原料气(烟气) | 净化气 | 解吸气 | 吸收剂贫液(MDEA+ MEA+H2O) | 吸收剂富液(MDEA+ MEA+H2O) | 净化气 | 解吸气 | 吸收剂贫液(MDEA+ MEA+H2O) | 吸收剂富液(MDEA+ MEA+H2O) | |
流量/m3·h-1 | 46149.7 | 46566.5 | 1282.9 | 65 | 66.2 | 46958.3 | 1284.56 | 65 | 66.8 |
温度/℃ | 40 | 49.2 | 40 | 40 | 41.78 | 50.6 | 40 | 42 | 42.25 |
压力(绝对)/kPa | 110 | 101.3 | 130 | 180 | 110 | 101.3 | 130 | 180 | 110 |
主组分摩尔分率(CO2)/% | 2.86 | 0.277 | 92.1 | 0.027 | 0.057 | 0.28 | 92.1 | 0.027 | 0.0581 |
参数 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | |||||||
---|---|---|---|---|---|---|---|---|---|
原料气(烟气) | 净化气 | 解吸气 | 吸收剂贫液(MDEA+ MEA+H2O) | 吸收剂富液(MDEA+ MEA+H2O) | 净化气 | 解吸气 | 吸收剂贫液(MDEA+ MEA+H2O) | 吸收剂富液(MDEA+ MEA+H2O) | |
流量/m3·h-1 | 46149.7 | 46566.5 | 1282.9 | 65 | 66.2 | 46958.3 | 1284.56 | 65 | 66.8 |
温度/℃ | 40 | 49.2 | 40 | 40 | 41.78 | 50.6 | 40 | 42 | 42.25 |
压力(绝对)/kPa | 110 | 101.3 | 130 | 180 | 110 | 101.3 | 130 | 180 | 110 |
主组分摩尔分率(CO2)/% | 2.86 | 0.277 | 92.1 | 0.027 | 0.057 | 0.28 | 92.1 | 0.027 | 0.0581 |
设备名称 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
数量 | 处理能力 (单台) | 设计条件 | 功率 (单台) | 单价 /万元 | 数量 | 处理能力 (单台) | 设计条件 | 功率 (单台) | 单价 /万元 | |
吸收塔 | 1 | 50000m3∙h-1 | 190kPa,60℃ | 350 | ||||||
超重力吸收器 | 1 | 50000m3∙h-1 | 190kPa,60℃ | 15kW | 220 | |||||
富液缓冲罐 | 1 | 67m3∙h-1 | 145kPa,50℃ | 5 | 1 | 67m3∙h-1 | 145kPa,50℃ | 5 | ||
贫液冷却器 | 2 | 105m2,1303kW | 800kPa,80℃ | 10 | 2 | 105m2,1303kW | 800kPa,80℃ | 10 | ||
贫液泵 | 1 | 70m3∙h-1 | 30kW | 4 | 1 | 70m3∙h-1 | 30kW | 4 | ||
富液泵 | 1 | 70m3∙h-1 | 30kW | 4 | 2 | 40m3∙h-1 | 15kW | 2 | ||
贫富液换热器 | 4 | 46.6m2,3037kW(总) | 800kPa,160℃ | 20 | 2 | 24m2,1520kW(总) | 800kPa,160℃ | 20 | ||
再生气与富液换热器 | 1 | 20m3,157kW | 800kPa,160℃ | 15 | ||||||
再沸器冷凝水与富液换热器 | 1 | 20m3,157kW | 800kPa,160℃ | 6 | ||||||
再生塔 | 1 | 70m3∙h-1 | 150kPa,120℃ | 80 | 1 | 70m3∙h-1 | 150kPa,120℃ | 80 | ||
重沸器 | 1 | 170m2,1820kW | 800kPa,160℃ | 29 | 1 | 170m2,1820kW | 800kPa,160℃ | 29 | ||
CO2冷却器 | 1 | 20m3,251.3kW | 200kPa,120℃ | 15 | 1 | 20 m3∙h-1,251.3kW | 200kPa,120℃ | 15 | ||
CO2分液罐 | 1 | 2319m3∙h-1 | 200kPa,120℃ | 12 | 1 | 2319m3∙h-1 | 200kPa,120℃ | 12 | ||
贫液缓冲罐 | 1 | 70m3∙h-1 | 110kPa,50℃ | 10 | 1 | 70m3∙h-1 | 110kPa,50℃ | 10 | ||
总计 | 60kW | 539 | 75kW | 428 |
设备名称 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
数量 | 处理能力 (单台) | 设计条件 | 功率 (单台) | 单价 /万元 | 数量 | 处理能力 (单台) | 设计条件 | 功率 (单台) | 单价 /万元 | |
吸收塔 | 1 | 50000m3∙h-1 | 190kPa,60℃ | 350 | ||||||
超重力吸收器 | 1 | 50000m3∙h-1 | 190kPa,60℃ | 15kW | 220 | |||||
富液缓冲罐 | 1 | 67m3∙h-1 | 145kPa,50℃ | 5 | 1 | 67m3∙h-1 | 145kPa,50℃ | 5 | ||
贫液冷却器 | 2 | 105m2,1303kW | 800kPa,80℃ | 10 | 2 | 105m2,1303kW | 800kPa,80℃ | 10 | ||
贫液泵 | 1 | 70m3∙h-1 | 30kW | 4 | 1 | 70m3∙h-1 | 30kW | 4 | ||
富液泵 | 1 | 70m3∙h-1 | 30kW | 4 | 2 | 40m3∙h-1 | 15kW | 2 | ||
贫富液换热器 | 4 | 46.6m2,3037kW(总) | 800kPa,160℃ | 20 | 2 | 24m2,1520kW(总) | 800kPa,160℃ | 20 | ||
再生气与富液换热器 | 1 | 20m3,157kW | 800kPa,160℃ | 15 | ||||||
再沸器冷凝水与富液换热器 | 1 | 20m3,157kW | 800kPa,160℃ | 6 | ||||||
再生塔 | 1 | 70m3∙h-1 | 150kPa,120℃ | 80 | 1 | 70m3∙h-1 | 150kPa,120℃ | 80 | ||
重沸器 | 1 | 170m2,1820kW | 800kPa,160℃ | 29 | 1 | 170m2,1820kW | 800kPa,160℃ | 29 | ||
CO2冷却器 | 1 | 20m3,251.3kW | 200kPa,120℃ | 15 | 1 | 20 m3∙h-1,251.3kW | 200kPa,120℃ | 15 | ||
CO2分液罐 | 1 | 2319m3∙h-1 | 200kPa,120℃ | 12 | 1 | 2319m3∙h-1 | 200kPa,120℃ | 12 | ||
贫液缓冲罐 | 1 | 70m3∙h-1 | 110kPa,50℃ | 10 | 1 | 70m3∙h-1 | 110kPa,50℃ | 10 | ||
总计 | 60kW | 539 | 75kW | 428 |
名称 | 规格 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | ||||
---|---|---|---|---|---|---|---|
消耗量 | 用量 | 费用 | 消耗量 | 用量 | 费用 | ||
低压饱和蒸汽 | 0.5MPa,150℃ | 2.98GJ∙(tCO2)-1 | 1.408t∙(tCO2)-1 | 309.76CNY∙(tCO2)-1 | 2.6GJ∙(tCO2)-1 | 1.23t∙(tCO2)-1 | 270.6CNY∙(tCO2)-1 |
电 | 380V,220V | 6kW∙h-1 | 30kW∙h-1∙(tCO2)-1 | 24CNY∙(tCO2)-1 | 75kW∙h-1 | 37.5kW∙h-1∙(tCO2)-1 | 37.5CNY∙(tCO2)-1 |
新鲜水 | 0.30~0.6MPa(表压) 环境温度 | 7.5t∙h-1 | 3.75t∙(tCO2)-1 | 18.75CNY∙(tCO2)-1 | 7t∙h-1 | 3.5t∙(tCO2)-1 | 17.5CNY∙(tCO2)-1 |
总计 | 352.51CNY∙(tCO2)-1 | 325.6CNY∙(tCO2)-1 |
名称 | 规格 | 典型醇胺法CO2捕集工艺 | 低能耗高效CO2捕集工艺 | ||||
---|---|---|---|---|---|---|---|
消耗量 | 用量 | 费用 | 消耗量 | 用量 | 费用 | ||
低压饱和蒸汽 | 0.5MPa,150℃ | 2.98GJ∙(tCO2)-1 | 1.408t∙(tCO2)-1 | 309.76CNY∙(tCO2)-1 | 2.6GJ∙(tCO2)-1 | 1.23t∙(tCO2)-1 | 270.6CNY∙(tCO2)-1 |
电 | 380V,220V | 6kW∙h-1 | 30kW∙h-1∙(tCO2)-1 | 24CNY∙(tCO2)-1 | 75kW∙h-1 | 37.5kW∙h-1∙(tCO2)-1 | 37.5CNY∙(tCO2)-1 |
新鲜水 | 0.30~0.6MPa(表压) 环境温度 | 7.5t∙h-1 | 3.75t∙(tCO2)-1 | 18.75CNY∙(tCO2)-1 | 7t∙h-1 | 3.5t∙(tCO2)-1 | 17.5CNY∙(tCO2)-1 |
总计 | 352.51CNY∙(tCO2)-1 | 325.6CNY∙(tCO2)-1 |
1 | ZHOU Huairong, WANG Jian, MENG Wenliang, et al. Comparative investigation of CO2-to-methanol process using different CO2 capture technologies[J]. Fuel, 2023, 338: 127359. |
2 | NGUYEN Ngoc N, LA Vinh T, HUYNH Chinh D, et al. Technical and economic perspectives of hydrate-based carbon dioxide capture[J]. Applied Energy, 2022, 307: 118237. |
3 | SCHORN Felix, BREUER Janos L, SAMSUN Remzi Can, et al. Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations[J]. Advances in Applied Energy, 2021, 3(25): 100050. |
4 | 谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究[J]. 中国科学院院刊, 2022, 37(4): 435-443. |
TAN Xianchun, GUO Wen, FAN Jie, et al. Policy framework and technology innovation policy of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 435-443. | |
5 | 宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
6 | 江怀友, 沈平平, 宋新民, 等. 世界气候变暖形势严峻 二氧化碳减排工作势在必行[J]. 中国能源, 2007, 29(5): 10-16. |
JIANG Huaiyou, SHEN Pingping, SONG Xinmin, et al. CO2 emission mitigation is urgent due to global climate warming severely[J]. Energy of China, 2007, 29(5): 10-16. | |
7 | KIM Young Eun, Jin Ah LIM, JEONG Soon Kwan, et al. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions[J]. Bulletin of the Korean Chemical Society, 2013, 34(3): 783-787. |
8 | LI Xiaonian, HAGAMAN Edward, TSOURIS Costas, et al. Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase[J]. Energy & Fuels, 2003, 17(1): 69-74. |
9 | MA Yanqing, LIAO Yitao, SU Yi, et al. Comparative investigation of different CO2 capture technologies for coal to ethylene glycol process[J]. Processes, 2021, 9(2): 207. |
10 | 唐思扬, 李星宇, 鲁厚芳, 等. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
TANG Siyang, LI Xingyu, LU Houfang, et al. Perspective on low-energy chemical absorption for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1102-1106. | |
11 | 赵颖颖, 王建行, 王露蓉, 等. 双极膜电渗析法海水矿化固定二氧化碳的新技术研究[C]//中国化学会·第一届全国二氧化碳资源化利用学术会议摘要集. 天津, 2019: 85. |
ZHAO Yingying, WANG Jianxing, WANG Lurong, et al. Research on a new technology for fixing carbon dioxide in seawater mineralization using bipolar membrane electrodialysis[C]//Chinese Chemical Society·First National Conference on Carbon Dioxide Resource Utilization. Tianjin, 2019: 85. | |
12 | 赵然磊, 马文涛, 徐晓, 等. 二氧化碳捕集化学吸收剂的研究进展[J]. 精细化工, 2023, 40(1): 1-9. |
ZHAO Ranlei, MA Wentao, XU Xiao, et al. Research progress of chemical absorbents for carbon dioxide capture[J]. Fine Chemicals, 2023, 40(1): 1-9. | |
13 | ZHAO Hong, SHAO Lei, CHEN Jianfeng. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
14 | 张嘉伟, 顾文波, 张富龙. 基于化学吸收法的二氧化碳捕集技术研究进展[J]. 低碳化学与化工, 2023, 48(4): 96-106. |
ZHANG Jiawei, GU Wenbo, ZHANG Fulong. Research progress of carbon dioxide capture technology based on chemical absorption method[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 96-106. | |
15 | IDEM Raphael, GELOWITZ Don, TONTIWACHWUTHIKUL Paitoon. Evaluation of the performance of various amine based solvents in an optimized multipurpose technology development pilot plant[J]. Energy Procedia, 2009, 1(1): 1543-1548. |
16 | NESSI Evie, PAPADOPOULOS Athanasios I, SEFERLIS Panos. A review of research facilities, pilot and commercial plants for solvent-based post-combustion CO2 capture: Packed bed, phase-change and rotating processes[J]. International Journal of Greenhouse Gas Control, 2021, 111: 103474. |
17 | 杨晖, 林海周, 罗海中, 等. 基于富液分流改进工艺的混合胺法燃煤电厂烟气碳捕集过程模拟研究[J]. 南方能源建设, 2019, 6(4): 40-46. |
YANG Hui, LIN Haizhou, LUO Haizhong, et al. Simulation and analysis of carbon dioxide capture process with split flow modification using MDEA/PZ blend solution in a coal-fired power plant[J]. Southern Energy Construction, 2019, 6(4): 40-46. | |
18 | 张亚萍, 刘建周, 季芹芹, 等. 醇胺法捕集燃煤烟气CO2工艺模拟及优化[J]. 化工进展, 2013, 32(4): 930-935. |
ZHANG Yaping, LIU Jianzhou, JI Qinqin, et al. Process simulation and optimization of flue gas CO2 capture by the alkanolamine solutions[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 930-935. | |
19 | 李幸辉. 超重力技术用于脱除变换气中二氧化碳的实验研究[D]. 北京: 北京化工大学, 2008. |
LI Xinghui. Study on the decarbonization of the shift gas with high gravity technology[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
20 | 张习文, 吕超, 金理健, 等. 煤化工尾气中二氧化碳的捕集、压缩模拟与优化[J]. 应用化工, 2023, 52(1): 128-133. |
ZHANG Xiwen, Chao LYU, JIN Lijian, et al. Carbon dioxide capture, compression simulation and optimization in coal chemical tail gas[J]. Applied Chemical Industry, 2023, 52(1): 128-133. | |
21 | 张金星. 醇胺法捕集高炉煤气CO2工艺流程模拟及优化[D]. 马鞍山: 安徽工业大学, 2021. |
ZHANG Jinxing. Simulation and optimization of CO2 capture process of blast furnace gas by alcohol amine method[D]. Ma’anshan: Anhui Universit of Technology, 2021. | |
22 | 曾东, 李振虎. 超重力技术的应用研究[J]. 石油化工, 2018, 47(7): 763-768. |
ZENG Dong, LI Zhenhu. Application progress of high gravity technology[J]. Petrochemical Technology, 2018, 47(7): 763-768. |
[1] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
[2] | GAO Libing, LYU Zhongyuan, SUO Hansheng, LIU Xiaoyu. Market analysis and development trend of petrochemical process simulation software [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 1-14. |
[3] | LI Chunli, CHENG Yonghui, LI Hao. Simulation of high pure alcohol preparation by distillation-adsorption-membrane separation coupling process [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1354-1361. |
[4] | Hongxing WANG, Haiyong LI, Qing ZHOU, Lu ZHANG. New energy-saving process for ethyl methyl carbonate preparation by reactive distillation in the dividing-wall column [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 66-72. |
[5] | Shuanshi FAN, Jingren ZHOU, Luling LI, Na WEI, Haitao LI. Simulation and analysis of CO2/N2 separation process by equilibrium stage hydrate-based gas separation method [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3600-3607. |
[6] | Pengkun GUO, Pan LI, Chun CHANG, Guizhuan XU, Xiaohua SHI, Jing BAI, Shuqi FANG. Advances in the application of computer simulation technology in biomass conversion [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. |
[7] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
[8] | WANG Jing, KE Shaoyong, HUANG Xiankun, LIU Yongzhong. Analysis of the effects of electrode particle size distribution on the electrochemical performances of lithium ion battery [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2620-2626. |
[9] | ZHANG Shijian, JIANG Hong. Improvement and analysis of DHX conventional process [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3648-3656. |
[10] | BAI Jingru, WANG Lintao, ZHANG Qingyan, BAI Zhang, WANG Qing. Simulation and analysis of modified comprehensive utilization system of Hua-dian oil shale using gaseous heat carrier [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1258-1264. |
[11] | LIANG Jingjing, LIU Guilian. Pinch analysis for the hydrogen network with the concentration of fresh hydrogen considered [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 887-892. |
[12] | ZHAO Jingnan, WANG Xiaorui, WU Yufeng, MENG Qingwei. Application of Aspen Batch process developer in preliminary design and optimization of production plant process of 25 tons of lurasidone hydrochloride [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 407-414. |
[13] | XUE Chao, FENG Xiao, DENG Chun. Process simulation of solvent and butadiene recovery unit of nickel butadiene rubber production process [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 439-444. |
[14] | QIN Liang, DENG Deru, WANG Congmin, CHEN Liguang, GUO Ning, FENG Wenqiang. Development and application of modern chemical simulation technology [J]. Chemical Industry and Engineering Progree, 2015, 34(s1): 18-21. |
[15] | ZHAO Dong, FENG Xiao, WANG Dongliang. Simulation and exergy analysis of coal to SNG process [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 990-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |