Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2645-2660.DOI: 10.16085/j.issn.1000-6613.2023-2119
• Catalysis and material technology • Previous Articles
LI Nan1,2,3(), GAO Dangge1,2,3(), LYU Bin1,2,3, TANG Litao1,2,3, CHEN Ken1,2,3, ZHENG Chi1,2,3, MA Jianzhong1,2,3
Received:
2023-12-01
Revised:
2024-01-09
Online:
2024-06-15
Published:
2024-05-15
Contact:
GAO Dangge
李楠1,2,3(), 高党鸽1,2,3(), 吕斌1,2,3, 唐立涛1,2,3, 陈肯1,2,3, 郑驰1,2,3, 马建中1,2,3
通讯作者:
高党鸽
作者简介:
李楠(2000—),女,博士研究生,研究方向为皮胶原基摩擦纳米传感器的构筑。E-mail:3357923747@qq.com。
基金资助:
CLC Number:
LI Nan, GAO Dangge, LYU Bin, TANG Litao, CHEN Ken, ZHENG Chi, MA Jianzhong. Research progress of leather collagen in flexible intelligent wearable field[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2645-2660.
李楠, 高党鸽, 吕斌, 唐立涛, 陈肯, 郑驰, 马建中. 皮胶原在柔性智能可穿戴领域的研究进展[J]. 化工进展, 2024, 43(5): 2645-2660.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2119
1 | FAN Xin, KE Tao, GU Haibin. Multifunctional, ultra-tough organohydrogel E-skin reinforced by hierarchical goatskin fibers skeleton for energy harvesting and self-powered monitoring[J]. Advanced Functional Materials, 2023, 33(42): 2304015. |
2 | KENNEDY L J, RATNAJI T, KONIKKARA N, et al. Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte[J]. Journal of Cleaner Production, 2018, 197: 930-936. |
3 | GAO Dangge, GUO Shihao, ZHOU Yingying, et al. Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38077-38089. |
4 | ZHENG Chi, GAO Dangge, Bin LYU, et al. Eco-friendly bionic flexible multifunctional sensors based on biomass-MXene composites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(15): 5834-5844. |
5 | Shanghai Jiao Tong University. 125 Questions: Exploration and discovery[M]. Washing D C: Science, 2021. |
6 | SANDERSON K. Electronic skin: From flexibility to a sense of touch[J]. Nature, 2021, 591(7851): 685-687. |
7 | 姚黎明, 张研柔, 刘振华, 等. 纳米纤维素/MXene柔性电子器件的制备及应用研究进展[J]. 中国造纸学报, 2023, 38(3): 9-17. |
YAO Liming, ZHANG Yanrou, LIU Zhenhua, et al. Progress in the preparation and application of nanocellulose/MXene flexible electronic devices[J]. Transactions of China Pulp and Paper, 2023, 38(3): 9-17. | |
8 | GHODBANE S A, DUNN M G. Physical and mechanical properties of cross-linked type Ⅰ collagen scaffolds derived from bovine, porcine, and ovine tendons[J]. Journal of Biomedical Materials Research Part A, 2016, 104(11): 2685-2692. |
9 | HU Yang, LIU Lan, GU Zhipeng, et al. Modification of collagen with a natural derived cross-linker, alginate dialdehyde[J]. Carbohydrate Polymers, 2014, 102: 324-332. |
10 | SHARMA S, THIND S S, KAUR A. In vitro meat production system: Why and how?[J]. Journal of Food Science and Technology, 2015, 52(12): 7599-7607. |
11 | RAO J R, THANIKAIVELAN P, SREERAM K J, et al. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry[J]. Environmental Science & Technology, 2002, 36(6): 1372-1376. |
12 | SUNDAR V J, GNANAMANI A, MURALIDHARAN C, et al. Recovery and utilization of proteinous wastes of leather making: A review[J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(2): 151-163. |
13 | WANG Lili, CHEN Di, JIANG Kai, et al. New insights and perspectives into biological materials for flexible electronics[J]. Chemical Society Reviews, 2017, 46(22): 6764-6815. |
14 | TORCULAS M, MEDINA J, XUE Wei, et al. Protein-based bioelectronics[J]. ACS Biomaterials Science & Engineering, 2016, 2(8): 1211-1223. |
15 | MOGILNER I G, RUDERMAN G, GRIGERA J R. Collagen stability, hydration and native state[J]. Journal of Molecular Graphics and Modelling, 2002, 21(3): 209-213. |
16 | QU Wenjuan, GUO Tiantian, ZHANG Xinxin, et al. Preparation of tuna skin collagen-chitosan composite film improved by sweep frequency pulsed ultrasound technology[J]. Ultrasonics Sonochemistry, 2022, 82: 105880. |
17 | Minsik JO, MIN Kyungtaek, ROY B, et al. Protein-based electronic skin akin to biological tissues[J]. ACS Nano, 2018, 12(6): 5637-5645. |
18 | TAO Hu, HWANG Suk-Won, MARELLI B, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17385-17389. |
19 | ZHAO Ping, GAO Dangge, Bin LYU, et al. Fabrication of effective electromagnetic shielding leather with a chromium-free multi-network structure[J]. Journal of Cleaner Production, 2022, 374: 133856. |
20 | 王光宇, 肖美添, 赵鹏, 等. 胶原聚集体及其聚集行为研究进展[J]. 生物技术进展, 2017, 7(6): 587-593. |
WANG Guangyu, XIAO Meitian, ZHAO Peng, et al. Progress on collagen aggregates and their aggregation behavior[J]. Current Biotechnology, 2017, 7(6): 587-593. | |
21 | CHEN Qijue, PEI Ying, TANG Keyong, et al. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials—A review[J]. Collagen and Leather, 2023, 5(1): 1-27. |
22 | BAUMANN L, KAUFMAN J, SAGHARI S. Collagen fillers[J]. Dermatologic Therapy, 2006, 19(3): 134-140. |
23 | SANDERS J E, GOLDSTEIN B S. Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses[J]. Journal of Biomechanics, 2001, 34(12): 1581-1587. |
24 | LIU Xinhua, ZHENG Chi, LUO Xiaomin, et al. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications[J]. Materials Science and Engineering: C, 2019, 99: 1509-1522. |
25 | CAO Lilong, QIU Xia, JIAO Qin, et al. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review[J]. International Journal of Biological Macromolecules, 2021, 173: 225-243. |
26 | BEDI N, SRIVASTAVA D K, SRIVASTAVA A, et al. Marine biological macromolecules as matrix material for biosensor fabrication[J]. Biotechnology and Bioengineering, 2022, 119(8): 2046-2063. |
27 | DAN Weihua, CHEN Yining, DAN Nianhua, et al. Multi-level collagen aggregates and their applications in biomedical applications[J]. International Journal of Polymer Analysis and Characterization, 2019, 24(8): 667-683. |
28 | YANG Huan, XU Songcheng, SHEN Lirui, et al. Changes in aggregation behavior of collagen molecules in solution with varying concentrations of acetic acid[J]. International Journal of Biological Macromolecules, 2016, 92: 581-586. |
29 | DELGADO L M, BAYON Y, PANDIT A, et al. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices[J]. Tissue Engineering Part B: Reviews, 2015, 21(3): 298-313. |
30 | 杜田明. 鱼鳞胶原基质的复合改性及其在创面中的初步应用研究[D]. 北京: 中国人民解放军军事医学科学院, 2016. |
DU Tianming. Modification of fish scale collagen matrix and its preliminary application in wound repair[D]. Beijing: PLA Academy of Military Medical Sciences 2016. | |
31 | 蔡洁. 新型交联剂的合成及交联改性胶原的研究[D]. 广州: 华南理工大学, 2014. |
CAI Jie. Preparation of new crosslinking agents and studying on crosslinking of collagen with them[D]. Guangzhou: South China University of Technology, 2014. | |
32 | HU Yang, LIU Lan, DAN Weihua, et al. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix[J]. International Journal of Biological Macromolecules, 2013, 55: 221-230. |
33 | MYRONCHENKO S, ZVYAGINTSEVA T, ASHUKINA N. The effect of ultraviolet radiation on the organization and structure of collagen fibers of dermis[J]. Georgian Medical News, 2020(302): 82-85. |
34 | 缪楠. 鲫鱼皮胶原蛋白理化性质及其自组装行为研究[D]. 镇江: 江苏科技大学, 2019. |
MIAO Nan. Study on the physicochemical properties and self-assembly behavior of collagen from carassius auratus skin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. | |
35 | YU Xiaoyue, TANG Cuie, XIONG Shanbai, et al. Modification of collagen for biomedical applications: A review of physical and chemical methods[J]. Current Organic Chemistry, 2016, 20(17): 1797-1812. |
36 | ZHANG Xiaoxia, XU Songcheng, SHEN Lirui, et al. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification[J]. Journal of Leather Science and Engineering, 2020, 2(1): 1-29. |
37 | KOZLOWSKA J, STACHOWIAK N, PRUS W. Stability studies of collagen-based microspheres with Calendula officinalis flower extract[J]. Polymer Degradation and Stability, 2019, 163: 214-219. |
38 | XU Chengzhi, WEI Xu, SHU Feiyi, et al. Induction of fiber-like aggregation and gelation of collagen by ultraviolet irradiation at low temperature[J]. International Journal of Biological Macromolecules, 2020, 153: 232-239. |
39 | SONG Xiaoyan, DONG Pengfei, GRAVESANDE J, et al. UV-mediated solid-state cross-linking of electrospinning nanofibers of modified collagen[J]. International Journal of Biological Macromolecules, 2018, 120: 2086-2093. |
40 | WEADOCK K S, MILLER E J, BELLINCAMPI L D, et al. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment[J]. Journal of Biomedical Materials Research, 1995, 29(11): 1373-1379. |
41 | 张金伟, 曹念, 陈武勇. 微波辐照对胶原蛋白三股螺旋结构的影响[J]. 光谱学与光谱分析, 2018, 38(5): 1353-1357. |
ZHANG Jinwei, CAO Nian, CHEN Wuyong. Influence of microwave irradiation on collagen triple helix structure[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1353-1357. | |
42 | CAO Sheng, LI Hejun, LI Kezhi, et al. A dense and strong bonding collagen film for carbon/carbon composites[J]. Applied Surface Science, 2015, 347: 307-314. |
43 | BAILEY A J, LIGHT N D, ATKINS E D T. Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre[J]. Nature, 1980, 288(5789): 408-410. |
44 | CHOY A T H, LEONG K W, CHAN B P. Chemical modification of collagen improves glycosaminoglycan retention of their co-precipitates[J]. Acta Biomaterialia, 2013, 9(1): 4661-4672. |
45 | ADAMIAK K, SIONKOWSKA A. Current methods of collagen cross-linking: Review[J]. International Journal of Biological Macromolecules, 2020, 161: 550-560. |
46 | MASTROPASQUA L. Collagen cross-linking: When and how? A review of the state of the art of the technique and new perspectives[J]. Eye and Vision, 2015, 2(1): 1-10. |
47 | ZHANG Ting, YU Zhe, MA Yun, et al. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values[J]. Food Hydrocolloids, 2022, 124: 107270. |
48 | SCIALLA S, GULLOTTA F, IZZO D, et al. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: A mechanical and biological characterization[J]. Journal of Biomedical Materials Research Part A, 2022, 110(7): 1372-1385. . |
49 | LI Weilin, FAN Xialian, WANG Ying, et al. A glycidyl methacrylate modified collagen/polyethylene glycol diacrylate hydrogel: A mechanically strong hydrogel for loading levofloxacin[J]. New Journal of Chemistry, 2020, 44: 17027-17032. |
50 | OCAK B. Chitosan/collagen hydrolysate based films obtained from hide trimming wastes reinforced with chitosan nanoparticles[J]. Food Biophysics, 2021, 16(3): 381-394. |
51 | DELGADO L M, FULLER K, ZEUGOLIS D I. Collagen cross-linking: biophysical, biochemical, and biological response analysis[J]. Tissue Engineering Part A, 2017, 23(19-20): 1064-1077. |
52 | HAO Dongyu, WANG Xuechuan, LIU Xinhua, et al. Chrome-free tanning agent based on epoxy-modified dialdehyde starch towards sustainable leather making[J]. Green Chemistry, 2021, 23(23): 9693-9703. |
53 | GAO Dangge, LI Xinjing, CHENG Yiming, et al. The modification of collagen with biosustainable POSS graft oxidized sodium alginate composite[J]. International Journal of Biological Macromolecules, 2022, 200: 557-565. |
54 | DING Wei, PANG Xiaoyan, DING Zhiwen, et al. Constructing a robust chrome-free leather tanned by biomass-derived polyaldehyde via crosslinking with chitosan derivatives[J]. Journal of Hazardous Materials, 2020, 396: 122771. |
55 | SPADARO J A, BECKER R O, BACHMAN C H. Size-specific metal complexing sites in native collagen[J]. Nature, 1970, 225(5238): 1134-1136. |
56 | WISE W R, DAVIS S J, HENDRIKSEN W E, et al. Zeolites as sustainable alternatives to traditional tanning chemistries[J]. Green Chemistry, 2023, 25(11): 4260-4270. |
57 | CIAMBELLI P, SANNINO D, NAVIGLIO B, et al. Zeolite-chrome tanning: From laboratory to pilot scale[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2005, 155: 189-198. |
58 | BACARDIT A, VAN DER BURGH S, ARMENGOL J, et al. Evaluation of a new environment friendly tanning process[J]. Journal of Cleaner Production, 2014, 65: 568-573. |
59 | 庄辰, 陶芙蓉, 于润慧, 等. 明胶/胶原改性的研究进展[J]. 化学通报, 2015, 78(3): 202-207. |
ZHUANG Chen, TAO Furong, YU Runhui, et al. Progress in gelatin/collagen modification[J]. Chemistry, 2015, 78(3): 202-207. | |
60 | 周东艳. 鱼皮胶原蛋白材料及其复合材料的制备及性能研究[D]. 长春: 吉林大学, 2019. |
ZHOU Dongyan. Preparation and characterization of collagen materials of fish skin and its composite materials[D]. Changchun: Jilin University, 2019. | |
61 | 张亚飞, 逄欣雨, 叶张靖, 等. 胶原蛋白改性方法与应用[J]. 渔业研究, 2020, 42(2): 185-194. |
ZHANG Yafei, PANG Xinyu, YE Zhangjing, et al. Collagen modification method and application[J]. Journal of Fisheries Research, 2020, 42(2): 185-194. | |
62 | 汪晓鹏. 皮胶原蛋白改性高分子制备新型材料的研究[J]. 西部皮革, 2019, 41(13): 37. |
WANG Xiaopeng. Study on preparation of new materials by collagen modified polymer[J]. West Leather, 2019, 41(13): 37. | |
63 | 商晋, 郭康权, 陈文强. 葡甘聚糖/壳聚糖/水解胶原蛋白胶粘剂的二氧化钛共混改性[J]. 材料科学与工程学报, 2016, 34(1): 38-44. |
SHANG Jin, GUO Kangquan, CHEN Wenqiang. Improved performance of konjac glucomannan/chitosan/polypeptide adhesive blends by adding TiO2 [J]. Journal of Materials Science and Engineering, 2016, 34(1): 38-44. | |
64 | SIRIVISOOT S, PARETA R, HARRISON B S. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration[J]. Interface Focus, 2014, 4(1): 20130050. |
65 | KEBEDE Z T, TADESSE M G, CHANE T E, et al. Application of PEDOT: PSS conductive polymer to enhance the conductivity of natural leather: Retanning process[J]. Journal of Nanomaterials, 2023, 2023: 1-9. |
66 | RYAN A J, KEARNEY C J, SHEN Nian, et al. Electroconductive biohybrid collagen/pristine graphene composite biomaterials with enhanced biological activity[J]. Advanced Materials, 2018, 30(15): e1706442. |
67 | Hyo-Ryoung LIM, KIM Hee Seok, QAZI R, et al. Wearable flexible hybrid electronics: Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): 1901924. |
68 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. Cellulose: Cellulose-based flexible functional materials for emerging intelligent electronics[J]. Advanced Materials, 2021, 33(28): 2000619. |
69 | XIONG Zheng, YU Haiyang, GONG Xiao. Designing photothermal superhydrophobic PET fabrics via in situ polymerization and 1,4-conjugation addition reaction[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(28): 8708-8718. |
70 | HE Jiang, ZHANG Yufei, ZHOU Runhui, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
71 | ABODUREXITI A, YANG Congcong, MAIMAITIYIMING X. High-performance flexible pressure and temperature sensors with complex leather structure[J]. Macromolecular Materials and Engineering, 2020, 305(7): 2000181. |
72 | HAN Yanting, HU Jinlian, SUN Gang. Recent advances in skin collagen: Functionality and non-medical applications[J]. Journal of Leather Science and Engineering, 2021, 3(1): 1-12. |
73 | ZHENG Manhui, WANG Xuechuan, OUYANG Yue, et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing[J]. Biomaterials, 2021, 276: 121026. |
74 | WEGENE J D, THANIKAIVELAN P. Conducting leathers for smart product applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18209-18215. |
75 | HAMMOCK M L, CHORTOS A, C-K TEE B, et al. 25th Anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038. |
76 | WENGER M P E, BOZEC L, HORTON M A, et al. Mechanical properties of collagen fibrils[J]. Biophysical Journal, 2007, 93(4): 1255-1263. |
77 | ZAN Guangtao, WU Qingsheng. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Advanced Materials, 2016, 28(11): 2099-2147. |
78 | WANG Ziying, MA Zongtao, SUN Jingyao, et al. Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors[J]. Polymers, 2021, 13(5): 813. |
79 | MORENO S, BANIASADI M, MOHAMMED S, et al. Biocompatible collagen films as substrates for flexible implantable electronics[J]. Advanced Electronic Materials, 2015, 1(9): 1500154. |
80 | LIN Kaili, ZHANG Dawei, MACEDO M H, et al. Advanced collagen-based biomaterials for regenerative biomedicine[J]. Advanced Functional Materials, 2019, 29(3): 1804943. |
81 | MA Lie, GAO Changyou, MAO Zhengwei, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials, 2003, 24(26): 4833-4841. |
82 | WEI Benmei, ZHONG Huaying, WANG Linjie, et al. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples[J]. International Journal of Biological Macromolecules, 2019, 135: 400-406. |
83 | ZOU Binghua, CHEN Yuanyuan, LIU Yihan, et al. Repurposed leather with sensing capabilities for multifunctional electronic skin[J]. Advanced Science, 2018, 6(3): 1801283. |
84 | QIN Rong, LUO Xiaomin, FENG Jianyan, et al. A novel eco- and user-friendly graphene/leather-based composite for real-time mechano-monitoring of human motion[J]. Journal of Cleaner Production, 2022, 371: 133360. |
85 | BAI Zhongxue, WANG Xuechuan, HUANG Mengchen, et al. Versatile nano-micro collagen fiber-based wearable electronics for health monitoring and thermal management[J]. Journal of Materials Chemistry A, 2023, 11(2): 726-741. |
86 | JIMA DEMISIE W, PALANISAMY T, KALIAPPA K, et al. Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications[J]. Polymers for Advanced Technologies, 2015, 26(5): 521-527. |
87 | 翟瑞, 郭军, 戴睿, 等. 废弃皮革再生利用与面对的问题[J]. 皮革科学与工程, 2021, 31(5): 33-38. |
ZHAI Rui, GUO Jun, DAI Rui, et al. Recycling of waste leather and its problems[J]. Leather Science and Engineering, 2021, 31(5): 33-38. | |
88 | WANG Xuechuan, OUYANG Yue, LIU Xinhua, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure[J]. Chemical Engineering Journal, 2020, 392: 123672. |
89 | WANG Zhonglin, SONG Jinhui. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. |
90 | XU Zhenyuan, ZHANG Dongzhi, CAI Haolin, et al. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring[J]. Nano Energy, 2022, 102: 107719. |
91 | ZHAO Hongfa, XU Minyi, SHU Mingrui, et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current[J]. Nature Communications, 2022, 13: 3325. |
92 | XIE Yunrui, MA Qianli, YUE Bin, et al. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities[J]. Chemical Engineering Journal, 2023, 452: 139393. |
93 | OUYANG Yue, WANG Xuechuan, HOU Mengdi, et al. Skin-inspired wearable self-powered electronic skin with tunable sensitivity for real-time monitoring of sleep quality[J]. Nano Energy, 2022, 91: 106682. |
94 | ZHANG Shaochun, XIAO Yu, CHEN Huamin, et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human-machine interaction[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13802-13812. |
95 | CHENG Kui, LI Haoliang, ZHU Mohan, et al. In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties[J]. RSC Advances, 2020, 10(4): 2368-2377. |
96 | Ze NAN, WEI Wei, LIN Zhenhua, et al. Flexible nanocomposite conductors for electromagnetic interference shielding[J]. Nano-Micro Letters, 2023, 15(1): 1-50. |
97 | CHEN Yiming, YANG Yang, YE Xiong, et al. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021, 38: 101204. |
98 | 郭世豪. 基于废革屑水解物制备柔性电磁屏蔽薄膜的研究[D]. 西安: 陕西科技大学, 2022. |
GUO Shihao. Preparation of flexible electromagnetic shielding films based on hydrolysate of waste leather shavings[D]. Xi’an: Shaanxi University of Science & Technology, 2022. | |
99 | LIU Chang, WANG Xiaoling, HUANG Xin, et al. Absorption and reflection contributions to the high performance of electromagnetic waves shielding materials fabricated by compositing leather matrix with metal nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14036-14044. |
100 | ZENG Shulong, HUANG Zhaoxia, JIANG Hao, et al. From waste to wealth: A lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 52038-52049. |
101 | GAO Dangge, GUO Shihao, ZHOU Yingying, et al. Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps[J]. Journal of Colloid and Interface Science, 2022, 613: 396-405. |
102 | 张文博, 王佳宁, 卫林峰, 等. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076. |
ZHANG Wenbo, WANG Jianing, WEI Linfeng, et al. Preparation and application of functional polymer-based electromagnetic shielding materials[J]. Progress in Chemistry, 2023, 35(7): 1065-1076. | |
103 | YUAN Bin, LAI Shuangxin, LI Jianjun, et al. Trash into treasure: Stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2021, 9(7): 2298-2310. |
104 | ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696. |
105 | WU Jiawei, ZHANG Manni, SU Minyu, et al. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating[J]. Advanced Fiber Materials, 2022, 4(6): 1545-1555. |
106 | PENG Yucan, CUI Yi. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742. |
107 | PAN Ruijie, WU Jing, QU Jin, et al. Peak-like three-dimensional CoFe2O4/carbon nanotube decorated bamboo fabrics for simultaneous solar-thermal evaporation of water and photocatalytic degradation of bisphenol A[J]. Journal of Materials Science & Technology, 2024, 179: 40-49. |
108 | PAKDEL E, SHARP J, KASHI S, et al. Antibacterial superhydrophobic cotton fabric with photothermal, self-cleaning, and ultraviolet protection functionalities[J]. ACS Applied Materials & Interfaces, 2023, 15(28): 34031-34043. |
109 | MA Jianzhong, MA Li, ZHANG Lei, et al. Bio-based waterborne poly(vanillin-butyl acrylate)/MXene coatings for leather with desired warmth retention and antibacterial properties[J]. Engineering, 2023 |
110 | FAN Xiangqian, YANG Yang, SHI Xinlei, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Advanced Functional Materials, 2020, 30(52): 2007110. |
111 | MA Zhonglei, XIANG Xiaolian, SHAO Liang, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition, 2022, 61(15): e202200705. |
112 | FAN Ziyang, LU Liang, SANG Min, et al. Wearable safeguarding leather composite with excellent sensing, thermal management, and electromagnetic interference shielding[J]. Advanced Science, 2023, 10(26): e2302412. |
113 | HUANG Mengchen, YANG Maiping, GUO Xiaojing, et al. Scalable multifunctional radiative cooling materials[J]. Progress in Materials Science, 2023, 137: 101144. |
114 | XU Zhikui, LI Na, LIU Defang, et al. A new crystal Mg11(HPO3)8(OH)6 for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2018, 185: 536-541. |
115 | MENG Xin, CHEN Zhaochuan, QIAN Chenlu, et al. Hierarchical superhydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) membrane with a bead (SiO2 nanoparticles)-on-string (nanofibers) structure for all-day passive radiative cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 2256-2266. |
116 | XIE Long, WANG Xuechuan, BAI Zhongxue, et al. Facile “synergistic inner-outer activation” strategy for nano-engineering of nature-skin-derived wearable daytime radiation cooling materials[J]. Small, 2023, 19(26): 2207602. |
117 | ZHANG Kai, LEI Xiaojuan, MO Caiqing, et al. A zero-energy, zero-emission air conditioning fabric[J]. Advanced Science, 2023, 10(11): e2206925. |
118 | ZHANG Dong, LIANG Qianqian, ZHOU Zhou, et al. Multifunctional bacterial cellulose photothermal aerogels with multi-bonded network assisted by carbon nanotube[J]. Chemical Engineering Journal, 2023: 144436. |
119 | MO Caiqing, LEI Xiaojuan, TANG Xuelian, et al. Nanoengineering natural leather for dynamic thermal management and electromagnetic interference shielding[J]. Small, 2023, 19(42): 2303368. |
120 | XIONG Chuanyin, LI Mengrui, HAN Qing, et al. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances[J]. Journal of Materials Science & Technology, 2022, 97: 190-200. |
121 | KRAVCHYK K V, KOVALENKO M V. Perspective on design and technical challenges of Li-garnet solid-state batteries[J]. Science and Technology of Advanced Materials, 2022, 23(1): 41-48. |
122 | XU Tiezhu, WANG Di, LI Zhiwei, et al. Electrochemical proton storage: From fundamental understanding to materials to devices[J]. Nano-Micro Letters, 2022, 14(1): 1-23. |
123 | SHAHBAZI FARAHANI F, RAHMANIFAR M S, NOORI A, et al. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications[J]. Journal of the American Chemical Society, 2022, 144(8): 3411-3428. |
124 | LEE Jaehong, LLERENA ZAMBRANO B, Janghoon WOO, et al. Stretchable electronics: Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications [J]. Advanced Materials, 2020, 32(5): 1902532. |
125 | YU Chenyang, AN Jianing, CHEN Qiang, et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors Small Methods, 2020, 6(4): 1900824. |
126 | YU Yan, PAN Diankun, ZHAO Liang, et al. Paper-like polyphenylene sulfide/aramid fiber electrode with excellent areal capacitance and flame-retardant performance[J]. Advanced Fiber Materials, 2022, 4(5): 1246-1255. |
127 | MILLER E E, HUA Ye, TEZEL F H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors[J]. Journal of Energy Storage, 2018, 20: 30-40. |
128 | JIANG Hao, MA Jan, LI Chunzhong. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Advanced Materials, 2012, 24(30): 4197-4202. |
129 | WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
130 | FU Lijun, QU Qunting, HOLZE R, et al. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds?[J]. Journal of Materials Chemistry A, 2019, 7(25): 14937-14970. |
131 | KONIKKARA N, PUNITHAVELAN N, KENNEDY L J, et al. A new approach to solid waste management: Fabrication of supercapacitor electrodes from solid leather wastes using aqueous KOH electrolyte[J]. Clean Technologies and Environmental Policy, 2017, 19(4): 1087-1098. |
132 | 张璐璐. 氮掺杂碳基超级电容器电极材料的制备及性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. |
ZHANG Lulu. Fabrication and properties of nitrogen-doped carbon-based supercapacitor electrode materials[D]. Harbin: Harbin University of Science and Technology, 2020. | |
133 | LIU Pengyun, XING Zhihao, WANG Xue, et al. Nanoarchitectonics of nitrogen-doped porous carbon derived from leather wastes for solid-state supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(8): 4887-4901. |
134 | NIU Jin, LIU Mengyue, XU Feng, et al. Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors[J]. Carbon, 2018, 140: 664-672. |
135 | WU Hongqin, MU Jiahui, XU Yanglei, et al. Heat-resistant, robust, and hydrophilic separators based on regenerated cellulose for advanced supercapacitors[J]. Small, 2023, 19(1): e2205152. |
136 | YU Haijun, TANG Qunwei, WU Jihuai, et al. Using eggshell membrane as a separator in supercapacitor[J]. Journal of Power Sources, 2012, 206: 463-468. |
137 | XU Heng, WANG Yaping, LIAO Xuepin, et al. A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity[J]. Journal of Energy Chemistry, 2020, 47: 324-332. |
[1] | PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. |
[2] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[5] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[6] | CHEN Bangfu, OUYANG Ping, LI Yuhan, DUAN Youyu, DONG Fan. Application of ZnSn(OH)6-based nanomaterials in environmental photocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 756-764. |
[7] | SUN Guoqi, WANG Wei, SONG Bing, WANG Liang, SHAO Ruiqi, XU Zhiwei, LUO Shigang, YAN Minjie, WANG Lijing, QIAN Xiaoming. Research progress of thermoplastic modification of polyvinyl alcohol [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 293-306. |
[8] | GUO Rui, LI Ping’an, ZHAO Yunfei. Synthesis and performance of silicon modified BPA-PA phenolic epoxy resin conductive adhesive [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4473-4480. |
[9] | JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. |
[10] | WANG Yuanyuan, SONG Hua, YUAN Dandan, SUN Xinglong, LIU Yanxiu. Alkylation of toluene with tert-butyl alcohol catalyzed by citric acid modified H-beta zeolite [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 237-243. |
[11] | KONG Yue, HUANG Yanshan, LUO Yu, HAN Sheng. Application status, key issues and prospects of graphene-based composite materials in the field of new energy conversion and storage industry [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5118-5131. |
[12] | QIAO Liangzhi, DU Kaifeng. Fabrication and application of polysaccharide microspheres [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4305-4313. |
[13] | LIN Shaohua, WU Haixia, GAO Liping, YU Yiping. Current status and future prospects of modified carbon nanotube and its composite materials application for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3466-3479. |
[14] | LI Siyuan, LI Ruisong, CHENG Jun, GAO Mengmeng, ZHANG Yucang, SONG Hui. Preparation and characterization of acrylamide modified corn starch/PVA composite film [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3374-3379. |
[15] | CHEN Shaohua, CHEN Wenliang, DING Yi, ZHAO Donglin, XIE Fazhi, REN Qifang. Study on the structure and adsorption mechanism of three dimensional electrochemical modified electrode for dopamine response [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6135-6144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |