Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 2174-2182.DOI: 10.16085/j.issn.1000-6613.2023-0539
• Resources and environmental engineering • Previous Articles
Received:
2023-04-07
Revised:
2023-10-27
Online:
2024-05-13
Published:
2024-04-15
Contact:
ZHOU Mingxian
通讯作者:
周铭贤
作者简介:
周铭贤(1997—),女,硕士,工程师,研究方向为新能源固废资源化。E-mail:zhoumingxian0505@163.com。
CLC Number:
ZHOU Mingxian, YE Xiaozhou. Optimization of preferential lithium extraction from waste ternary lithium ion batteries by carbothermal reduction[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2174-2182.
周铭贤, 叶小舟. 废锂离子电池碳热还原优先提锂工艺优化[J]. 化工进展, 2024, 43(4): 2174-2182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0539
材料 | 研究特色 | 参考文献 |
---|---|---|
废LiCoO2电池负极石墨 | 对废锂电池正极材料的碳热还原反应进行了机理研究,提出了氧八面体坍缩模型,且耦合反应理论和晶体结构分析表明,石墨确实促进了锂钴氧化物的热解 | Mao等[ |
废NCM电池褐煤 | 用褐煤对电池正极材料进行焙烧,用碳酸化水浸出法选择性提锂,最后用硫酸浸出残渣;锂的浸出率超过80%,Ni、Co和Mn的提取率超过96% | Zhang等[ |
废NCM电池炭黑 | 提出了还原焙烧和分步浸出的技术路线,在最佳条件下,Li、Ni、Co和Mn的浸出率分别高达93.68%、99.56%、99.87%和99.9%,并通过收缩岩心模型分析了酸浸动力学 | Liu等[ |
废NCM电池石墨粉末 | 提出了微波碳热还原的技术路线,结果表明在500W微波能量和30min时间的条件下,可以有效地还原过渡金属;Co、Ni和Mn的回收率达到97%,Li的回收率达到99% | Fu等[ |
废NCM电池甲烷气体 | 提出了甲烷还原焙烧-碳酸化水浸-酸浸的技术路线,在焙烧温度600℃、时间30min、甲烷流量300mL/min的条件下,锂的浸出率为88%,Mn、Ni和Co的浸出率均超过98% | Yang等[ |
废LiCoO2电池废聚乙烯、 生物质和煤 | 评估了三种不同的碳质材料与废LiCoO2电池共热解回收金属的方法,效果依次为煤>生物质>聚乙烯;在800℃的热解温度和10min的停留时间下,获得了Co(96.8%)和Li(88.7%)的最佳回收率 | Lai等[ |
废NCM电池导电剂(乙炔黑) 和凝结剂(PVDF) | 使用负极活性材料中含有的有机物作为还原剂,结果表明,PVDF和乙炔黑都可以将高价金属还原为低价氧化物或单质,且乙炔黑具有比PVDF更强的热还原能力 | Jiang等[ |
废NCM电池炭粉 | 将废三元锂电池与炭粉混合进行无氧焙烧后通过酸浸出锂、钴、镍、锰,研究了该过程的焙烧热力学和酸浸动力学 | Gu等[ |
废NCM电池木质纤维素 | 使用木质纤维素生物质产生热解气体还原废锂电池正极材料,其中CO起主要作用;例如在废LiCoO2电池中,在500℃下锂回收效率达到99.99%,纯度达到98.3% | Zhou等[ |
废NCM电池碳质材料(煤) | 提出了碳热还原与多级浸出结合的方法,电池材料中的锂被还原为Li2CO3和LiAlO2,分别通过水浸、碱浸浸出;当铝为4.05%时,锂的综合回收率为87.15% | Zhang等[ |
废NCM电池和废LiCoO2电池的 混合物生物质还原剂废竹粉 | 使用新型还原剂废竹粉对电池正极材料进行还原,使用还原焙烧-水浸出和低浓度酸浸出的技术路线,得出最佳焙烧条件为650℃、废竹粉/废正极材料质量比为1∶1,锂的回收率超过99% | Liu等[ |
材料 | 研究特色 | 参考文献 |
---|---|---|
废LiCoO2电池负极石墨 | 对废锂电池正极材料的碳热还原反应进行了机理研究,提出了氧八面体坍缩模型,且耦合反应理论和晶体结构分析表明,石墨确实促进了锂钴氧化物的热解 | Mao等[ |
废NCM电池褐煤 | 用褐煤对电池正极材料进行焙烧,用碳酸化水浸出法选择性提锂,最后用硫酸浸出残渣;锂的浸出率超过80%,Ni、Co和Mn的提取率超过96% | Zhang等[ |
废NCM电池炭黑 | 提出了还原焙烧和分步浸出的技术路线,在最佳条件下,Li、Ni、Co和Mn的浸出率分别高达93.68%、99.56%、99.87%和99.9%,并通过收缩岩心模型分析了酸浸动力学 | Liu等[ |
废NCM电池石墨粉末 | 提出了微波碳热还原的技术路线,结果表明在500W微波能量和30min时间的条件下,可以有效地还原过渡金属;Co、Ni和Mn的回收率达到97%,Li的回收率达到99% | Fu等[ |
废NCM电池甲烷气体 | 提出了甲烷还原焙烧-碳酸化水浸-酸浸的技术路线,在焙烧温度600℃、时间30min、甲烷流量300mL/min的条件下,锂的浸出率为88%,Mn、Ni和Co的浸出率均超过98% | Yang等[ |
废LiCoO2电池废聚乙烯、 生物质和煤 | 评估了三种不同的碳质材料与废LiCoO2电池共热解回收金属的方法,效果依次为煤>生物质>聚乙烯;在800℃的热解温度和10min的停留时间下,获得了Co(96.8%)和Li(88.7%)的最佳回收率 | Lai等[ |
废NCM电池导电剂(乙炔黑) 和凝结剂(PVDF) | 使用负极活性材料中含有的有机物作为还原剂,结果表明,PVDF和乙炔黑都可以将高价金属还原为低价氧化物或单质,且乙炔黑具有比PVDF更强的热还原能力 | Jiang等[ |
废NCM电池炭粉 | 将废三元锂电池与炭粉混合进行无氧焙烧后通过酸浸出锂、钴、镍、锰,研究了该过程的焙烧热力学和酸浸动力学 | Gu等[ |
废NCM电池木质纤维素 | 使用木质纤维素生物质产生热解气体还原废锂电池正极材料,其中CO起主要作用;例如在废LiCoO2电池中,在500℃下锂回收效率达到99.99%,纯度达到98.3% | Zhou等[ |
废NCM电池碳质材料(煤) | 提出了碳热还原与多级浸出结合的方法,电池材料中的锂被还原为Li2CO3和LiAlO2,分别通过水浸、碱浸浸出;当铝为4.05%时,锂的综合回收率为87.15% | Zhang等[ |
废NCM电池和废LiCoO2电池的 混合物生物质还原剂废竹粉 | 使用新型还原剂废竹粉对电池正极材料进行还原,使用还原焙烧-水浸出和低浓度酸浸出的技术路线,得出最佳焙烧条件为650℃、废竹粉/废正极材料质量比为1∶1,锂的回收率超过99% | Liu等[ |
元素 | 质量分数/% |
---|---|
Li | 7.12 |
Co | 12.26 |
Ni | 37.72 |
Mn | 12.34 |
Al | 0.35 |
C | 0.89 |
F | 0.3 |
元素 | 质量分数/% |
---|---|
Li | 7.12 |
Co | 12.26 |
Ni | 37.72 |
Mn | 12.34 |
Al | 0.35 |
C | 0.89 |
F | 0.3 |
名称 | 化学式 | 规格 | 生产商 |
---|---|---|---|
氢氧化钠 | NaOH | 优级纯 | 通用试剂 |
碳酸钠 | Na2CO3 | 分析纯 | 通用试剂 |
乙醇 | C2H5OH | 分析纯 | 阿拉丁 |
氮气 | N2 | 145bar① | 液化空气 |
二氧化碳 | CO2 | 145bar① | 液化空气 |
炭粉 | C | 58.79% | 麦克林 |
75.56% | 阿达玛斯 | ||
82.52% | 通用试剂 |
名称 | 化学式 | 规格 | 生产商 |
---|---|---|---|
氢氧化钠 | NaOH | 优级纯 | 通用试剂 |
碳酸钠 | Na2CO3 | 分析纯 | 通用试剂 |
乙醇 | C2H5OH | 分析纯 | 阿拉丁 |
氮气 | N2 | 145bar① | 液化空气 |
二氧化碳 | CO2 | 145bar① | 液化空气 |
炭粉 | C | 58.79% | 麦克林 |
75.56% | 阿达玛斯 | ||
82.52% | 通用试剂 |
编号 | Li | Co | Ni | Mn |
---|---|---|---|---|
本实验 | 7.12 | 12.26 | 37.72 | 12.34 |
Ⅰ | 4.30 | 11.28 | 22.03 | 2.19 |
Ⅱ | 4.35 | 15.52 | 17.23 | 3.87 |
Ⅲ | 4.16 | 6.75 | 20.78 | 7.13 |
Ⅳ | 6.24 | 37.79 | 13.48 | 1.75 |
Ⅴ | 3.79 | 7.62 | 17.36 | 6.00 |
编号 | Li | Co | Ni | Mn |
---|---|---|---|---|
本实验 | 7.12 | 12.26 | 37.72 | 12.34 |
Ⅰ | 4.30 | 11.28 | 22.03 | 2.19 |
Ⅱ | 4.35 | 15.52 | 17.23 | 3.87 |
Ⅲ | 4.16 | 6.75 | 20.78 | 7.13 |
Ⅳ | 6.24 | 37.79 | 13.48 | 1.75 |
Ⅴ | 3.79 | 7.62 | 17.36 | 6.00 |
1 | YANG Yu, WANG Renjie, SHEN Zhaojie, et al. Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway[J]. Advances in Applied Energy, 2023, 11: 100146. |
2 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
3 | LEI Shuya, CAO Yang, CAO Xuefeng, et al. Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10[J]. Separation and Purification Technology, 2020, 250: 117258. |
4 | ZHENG Xiaohong, ZHU Zewen, LIN Xiao, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 361-370. |
5 | SHIN Shun Myung, KIM Nak Hyoung, SOHN Jeong Soo, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181. |
6 | LIU Chunwei, LIN Jiao, CAO Hongbin, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. |
7 | REN Guoxing, XIAO Songwen, XIE Meiqiu, et al. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 450-456. |
8 | DANG Hui, LI Na, CHANG Zhidong, et al. Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery[J]. Separation and Purification Technology, 2020, 233: 116025. |
9 | CHEN Xiangping, CAO Ling, KANG Duozhi, et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part Ⅱ: Selective extraction of lithium[J]. Waste Management, 2018, 80: 198-210. |
10 | MESHRAM Pratima, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
11 | LI Jia, WANG Guangxu, XU Zhenming. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. |
12 | WANG Wenqiang, ZHANG Yingchao, LIU Xuegang, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019: doi:10.1021/acssuschemeng.9b01564 . |
13 | JIN Xi, ZHANG Pengyang, TENG Liumei, et al. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas[J]. Waste Management, 2023, 165: 189-198. |
14 | LIN Jiao, LI Li, FAN Ersha, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489. |
15 | FEI Zitong, SU Yongyou, ZHA Yunchun, et al. Selective lithium extraction of cathode materials from spent lithium-ion batteries via low-valent salt assisted roasting[J]. Chemical Engineering Journal, 2023, 464: 142534. |
16 | XIAO Jiefeng, NIU Bo, XU Zhenming. Novel approach for metal separation from spent lithium ion batteries based on dry-phase conversion[J]. Journal of Cleaner Production, 2020, 277: 122718. |
17 | PENG Chao, LIU Fupeng, WANG Zulin, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system[J]. Journal of Power Sources, 2019, 415: 179-188. |
18 | MAO Jiakai, LI Jia, XU Zhengming. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-929. |
19 | ZHANG Jialiang, HU Juntao, ZHANG Wenjuan, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 204: 437-446. |
20 | LIU Pengcheng, XIAO Li, CHEN Yifeng, et al. Recovering valuable metals from LiNi x CoyMn1- x- y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. |
21 | FU Yuanpeng, HE Yaqun, YANG Yong, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 832: 154920. |
22 | YANG Cheng, ZHANG Jialiang, YU Boyuan, et al. Recovery of valuable metals from spent LiNi x CoyMn z O2 cathode material via phase transformation and stepwise leaching[J]. Separation and Purification Technology, 2021, 267: 118609. |
23 | LAI Yiming, ZHU Xianqing, LI Jun, et al. Efficient recovery of valuable metals from cathode materials of spent LiCoO2 batteries via co-pyrolysis with cheap carbonaceous materials[J]. Waste Management, 2022, 148: 12-21. |
24 | JIANG Haidi, LI Zhaohui, XIE Weining, et al. Study on the thermal reduction effect of organic components in spent ternary lithium battery cathode active materials[J]. Waste Management, 2022, 148: 33-42. |
25 | GU Kunhong, ZHENG Weipeng, DING Bodong, et al. Comprehensive extraction of valuable metals from waste ternary lithium batteries via roasting and leaching: Thermodynamic and kinetic studies[J]. Minerals Engineering, 2022, 186: 107736. |
26 | ZHOU Fengyin, LI Xiangyun, WANG Shiyu, et al. Recovery of valuable metals from spent lithium-ion batteries through biomass pyrolysis gas-induced reduction[J]. Journal of Hazardous Materials, 2023, 459: 132150. |
27 | ZHANG Guangwen, YUAN Xue, Chor Yong TAY, et al. Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching[J]. Separation and Purification Technology, 2023, 314: 123555. |
28 | LIU Xiaojian, MA Yayun, ZHOU Xiangyang, et al. Reduction mechanism of bamboo powder pyrolysis in selective lithium extraction from spent lithium-ion batteries[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110172. |
29 | 邓超群, 王海北, 刘三平, 等. 废三元锂电池碳热还原焙烧热解研究[J]. 有色金属(冶炼部分), 2021(7): 98-104. |
DENG Chaoqun, WANG Haibei, LIU Sanping, et al. Study on carbothermal reduction roasting and pyrolysis of waste ternary lithium battery[J]. Nonferrous Metals (Extractive Metallurgy), 2021(7): 98-104. | |
30 | LOMBARDO Gabriele, EBIN Burçak, FOREMAN Mark R St J, et al. Chemical transformations in Li-ion battery electrode materials by carbothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13668-13679. |
31 | 刘子潇, 张家靓, 杨成, 等. 热力学研究在锂离子电池回收中的应用[J]. 化工进展, 2021, 40(10): 5325-5336. |
LIU Zixiao, ZHANG Jialiang, YANG Cheng, et al. Applications of thermodynamic research in recycling of lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5325-5336. | |
32 | 严康, 熊正阳, 刘志楼, 等. 废旧三元锂离子电池正极还原焙烧回收Li的研究[J]. 中南大学学报(自然科学版), 2020, 51(12): 3367-3378. |
YAN Kang, XIONG Zhengyang, LIU Zhilou, et al. Study on recycling Li of waste lithium ion batteries by reduction roasting[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3367-3378. | |
33 | HU Juntao, ZHANG Jialiang, LI Hongxu, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries [J]. Journal of Power Sources, 2017, 351:192-199. |
34 | MAKUZA Brian, YU Dawei, HUANG Zhu, et al. Dry grinding-carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals[J]. Resources, Conservation and Recycling, 2021, 174: 105784. |
[1] | Guangya ZHENG, Renfei CAO, Jupei XIA, Yi MEI, Zhengjie CHEN. Effect of different dopants on the carbothermal reduction of phosphate rock [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5112-5118. |
[2] | CHEN Yongzhen, LI Hualing, SONG Wenji, FENG Ziping. Solid phase regeneration of spent LiFePO4 cathode materials by carbothermal reduction method [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 133-140. |
[3] | RAO Bing, DAI Huixin, GAO Likun. Metallurgical progress of recovery indium from smelt residues [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4042-4052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |