1 |
H-E ALBRECHT, BORYS M, DAMASCHKE N, et al. Laser Doppler and Phase Doppler Measurement Techniques[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
|
2 |
SWITHENBANK J, BEER J, TAYLOR D, et al. A laser diagnostic technique for the measurement of droplet and particle size distribution[C]//Proceedings of the 14th Aerospace Sciences Meeting. Washington, D C, USA. Reston, Virigina: AIAA, 1976: AIAA1976-69.
|
3 |
ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947.
|
4 |
SELLAPPAN Prabu, ALVI Farrukh S, CATTAFESTA Louis N. Lagrangian and Eulerian measurements in high-speed jets using Multi-Pulse Shake-The-Box and fine scale reconstruction (VIC#)[J]. Experiments in Fluids, 2020, 61(7): 157.
|
5 |
LEVOY Marc. Light fields and computational imaging[J]. Computer, 2006, 39(8): 46-55.
|
6 |
SCHABLINSKI Jan, KROLL Mattias, BLOCK Dietmar. Particle tracking velocimetry of dusty plasmas using stereoscopic In-line holography[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 779-783.
|
7 |
GAO Jian, Katz Joseph. Self-calibrated microscopic dual-view tomographic holography for 3D flow measurements[J]. Optics Express, 2018, 26(13): 16708-16725.
|
8 |
WILLERT C E, GHARIB M. Three-dimensional particle imaging with a single camera[J]. Experiments in Fluids, 1992, 12(6): 353-358.
|
9 |
LEVIN Anat, FERGUS Rob, DURAND Frédo, et al. Image and depth from a conventional camera with a coded aperture[J]. ACM Transactions on Graphics, 26(3): 70.
|
10 |
PEREIRA Francisco, GHARIB Morteza. Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows[J]. Measurement Science and Technology, 2002, 13(5): 683-694.
|
11 |
YOON Sang Youl, KIM Kyung Chun. 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept[J]. Measurement Science and Technology, 2006, 17(11): 2897-2905.
|
12 |
杜军, 魏正英, 何威, 等. 微压印中抗蚀剂三维微流场可视化实验研究[J]. 浙江大学学报(工学版), 2013, 47(10): 1871-1876.
|
|
DU Jun, WEI Zhengying, HE Wei, et al. Visualization experimental research on resist three-dimensional microflow fields in microlithography[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1871-1876.
|
13 |
WINER Michael H, AHMADI Ali, CHEUNG Karen C. Application of a three-dimensional (3D) particle tracking method to microfluidic particle focusing[J]. Lab on a Chip, 2014, 14(8): 1443-1451.
|
14 |
PEREIRA Francisco, GHARIB Morteza. A method for three-dimensional particle sizing in two-phase flows[J]. Measurement Science and Technology, 2004, 15(10): 2029-2038.
|
15 |
LIN Dejiao, ANGARITA-JAIMES Natalia C, CHEN Siyu, et al. Three-dimensional particle imaging by defocusing method with an annular aperture[J]. Optics Letters, 2008, 33(9): 905-907.
|
16 |
DREISBACH Maximilian, FRIEDERICH Pascal, STROH Alexander, et al. Particle detection by means of neural networks and synthetic training data refinement in defocusing particle tracking velocimetry[J]. Measurement Science and Technology, 2022, 33(12): 124001.
|
17 |
KAO H P, VERKMAN A S. Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position[J]. Biophysical Journal, 1994, 67(3): 1291-1300.
|
18 |
CIERPKA C, SEGURA R, HAIN R, et al. A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics[J]. Measurement Science and Technology, 2010, 21(4): 045401.
|
19 |
KÄHLER Christian J, CIERPKA Christian, ROSSI Massimiliano. Astigmatic micro particle imaging[M]// Encyclopedia of Nanotechnology. Dordrecht: Springer, 2015: 1-7.
|
20 |
BROCKMANN Philipp, KAZEROONI Hamid Tabaei, BRANDT Luca, et al. Utilizing the ball lens effect for astigmatism particle tracking velocimetry[J]. Experiments in Fluids, 2020, 61(2): 67.
|
21 |
BARNKOB Rune, ROSSI Massimiliano. General defocusing particle tracking: Fundamentals and uncertainty assessment[J]. Experiments in Fluids, 2020, 61(4): 110.
|
22 |
BARNKOB Rune, CIERPKA Christian, CHEN Minqian, et al. Defocus particle tracking: A comparison of methods based on model functions, cross-correlation, and neural networks[J]. Measurement Science and Technology, 2021, 32(9): 094011.
|
23 |
徐日辛, 周骛, 张翔云. 基于深度学习的显微离焦图像法颗粒深度测量[J]. 化工进展, 2021, 40(12): 6499-6504.
|
|
XU Rixin, ZHOU Wu, ZHANG Xiangyun. Particle depth position measurement using microscopic defocused imaging method based on deep learning[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6499-6504.
|
24 |
SURYA G, SUBBARAO M. Depth from defocus by changing camera aperture: A spatial domain approach[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, NY, USA. IEEE, 2002: 61-67.
|
25 |
LEBRUN Denis, OZKUL Cafer, TOUIL C E, et al. Simultaneous particle size, 3D position and velocity measurements from processing of defocused images recorded with two CCD cameras[C]//Proceed SPIE 2248, Optical Measurements and Sensors for the Process Industries, 1994, 2248: 294-306.
|
26 |
MURATA Shigeru, KAWAMURA Masayoshi. Particle depth measurement based on depth-from-defocus[J]. Optics & Laser Technology, 1999, 31(1): 95-102.
|
27 |
ZHOU Wu, LUO Xu, CHEN Benting, et al. Estimation of particle depth from two defocused images using the Fourier transform[J]. Particuology, 2020, 49: 48-54.
|
28 |
KAZOE Yutaka, SHIBATA Kazuki, KITAMORI Takehiko. Super-resolution defocusing nanoparticle image velocimetry utilizing spherical aberration for nanochannel flows[J]. Analytical Chemistry, 2021, 93(39): 13260-13267.
|
29 |
FUCHS T, HAIN R, KÄHLER C J. In situ calibrated defocusing PTV for wall-bounded measurement volumes[J]. Measurement Science and Technology, 2016, 27(8): 084005.
|
30 |
LEISTER Robin, FUCHS Thomas, KRIEGSEIS Jochen. Defocusing PTV applied to an open wet clutch: From macro to micro[J]. Experiments in Fluids, 2023, 64(5): 94.
|
31 |
DONG Xiangrui, WANG Xiaoxiao, ZHOU Wu, et al. 3D particle streak velocimetry by defocused imaging[J]. Particuology, 2023, 72: 1-9.
|
32 |
RAO Saini Jatin, SHARMA Shubham, BASU Saptarshi, et al. Depth from defocus technique: A simple calibration-free approach for dispersion size measurement[EB/OL]. 2023: arXiv: 2307.10678.
|
33 |
张小磊. 基于深度学习和散焦图像的粒子场定位研究[D]. 邯郸: 河北工程大学, 2023.
|
|
ZHANG Xiaolei. Research on particle field localization based on deep learning and defocused images [D]. Handan: Hebei University of Engineering, 2023.
|
34 |
张翔云, 周骛, 姜友新, 等. 基于卷积神经网络的离焦颗粒粒径与位置测量[J]. 光学学报, 2022, 42(19): 100-106.
|
|
ZHANG Xiangyun, ZHOU Wu, JIANG Youxin, et al. Particle size and position measurement of defocused particle based on convolutional neural network[J]. Acta Optica Sinica, 2022, 42(19): 100-106.
|
35 |
ZHOU Wu, TROPEA Cameron, CHEN Benting, et al. Spray drop measurements using depth from defocus[J]. Measurement Science and Technology, 2020, 31(7): 075901.
|
36 |
ZHOU Wu, ZHANG Yukun, CHEN Benting, et al. Sensitivity analysis and measurement uncertainties of a two-camera depth from defocus imaging system[J]. Experiments in Fluids, 2021, 62(11): 224.
|
37 |
PARK Hyun Jin, YAMAGISHI Shunta, OSUKA Susumu, et al. Development of multi-cycle rainbow particle tracking velocimetry improved by particle defocusing technique and an example of its application on twisted Savonius turbine[J]. Experiments in Fluids, 2021, 62(4): 71.
|