Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 579-585.DOI: 10.16085/j.issn.1000-6613.2023-1355
• Column: multiphase flow test • Previous Articles Next Articles
HOU Likai1,2(), FAN Xu2, BAO Fubing1,2(
)
Received:
2023-08-08
Revised:
2023-10-30
Online:
2024-03-07
Published:
2024-02-25
Contact:
BAO Fubing
通讯作者:
包福兵
作者简介:
侯立凯(1988—),男,博士,副教授,研究方向为微纳流体器件与微尺度计量。E-mail:houlikai@cjlu.edu.cn。
基金资助:
CLC Number:
HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585.
侯立凯, 范旭, 包福兵. 微小液体流量校准技术[J]. 化工进展, 2024, 43(2): 579-585.
机构名称 | 设计特点 | 校准范围(体积流量和质量流量) | 不确定度(k=2)/% |
---|---|---|---|
METAS | 恒压驱动,防蒸发阱 | 0.1~1000μL/min 0.006~60g/h | 0.6~0.1 |
法国气动和热工业技术中心 (CETIAT) | 恒温,防蒸发阱 | 16.6μL/min~167mL/min 0.001~5000g/h | 0.6~0.1 |
英国贸易和工业部 (DTI) | 温度控制,稳定性控制,油封法 | 0.017μL/min~10mL/min 0.001~600g/h | 5~0.05 |
葡萄牙质量研究所 (IPQ) | 双量程系统,防蒸发阱,蒸发修正 | 0.05μL/min~10mL/min 0.003~600g/h | 6~0.15 |
荷兰国家计量标准研究所 (VSL) | 科里奥利流量控制器驱动,加盖防蒸发 | 4.2μL/min~83mL/min 0.25~5000g/h | 1~0.05 |
荷兰布朗克霍斯特公司 (Bronkhorst) | 动态称重,油封法 | 16.6μL/min~3.33mL/min 1~200g/h | 0.62~0.06 |
机构名称 | 设计特点 | 校准范围(体积流量和质量流量) | 不确定度(k=2)/% |
---|---|---|---|
METAS | 恒压驱动,防蒸发阱 | 0.1~1000μL/min 0.006~60g/h | 0.6~0.1 |
法国气动和热工业技术中心 (CETIAT) | 恒温,防蒸发阱 | 16.6μL/min~167mL/min 0.001~5000g/h | 0.6~0.1 |
英国贸易和工业部 (DTI) | 温度控制,稳定性控制,油封法 | 0.017μL/min~10mL/min 0.001~600g/h | 5~0.05 |
葡萄牙质量研究所 (IPQ) | 双量程系统,防蒸发阱,蒸发修正 | 0.05μL/min~10mL/min 0.003~600g/h | 6~0.15 |
荷兰国家计量标准研究所 (VSL) | 科里奥利流量控制器驱动,加盖防蒸发 | 4.2μL/min~83mL/min 0.25~5000g/h | 1~0.05 |
荷兰布朗克霍斯特公司 (Bronkhorst) | 动态称重,油封法 | 16.6μL/min~3.33mL/min 1~200g/h | 0.62~0.06 |
机构/研究人员 | 技术路线 | 校准范围(体积流量) | 不确定度(k=2)/% |
---|---|---|---|
吕贝克应用技术大学[ | FTM | 50nL/min~500μL/min | 4 |
CETIAT[ | FTM | 1nL/min~16μL/min | 0.15~11 |
IPQ[ | FTM | 最低16.67nL/min | 7 |
IPQ[ | 干涉测量法 | 最低16.67nL/min | 2.9 |
Hahn-Schickard公司[ | micro-PIV | 70~200nL/min | 4.2~5.6 |
机构/研究人员 | 技术路线 | 校准范围(体积流量) | 不确定度(k=2)/% |
---|---|---|---|
吕贝克应用技术大学[ | FTM | 50nL/min~500μL/min | 4 |
CETIAT[ | FTM | 1nL/min~16μL/min | 0.15~11 |
IPQ[ | FTM | 最低16.67nL/min | 7 |
IPQ[ | 干涉测量法 | 最低16.67nL/min | 2.9 |
Hahn-Schickard公司[ | micro-PIV | 70~200nL/min | 4.2~5.6 |
1 | 刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(1): 10-17. |
LIU Zhaoli, ZHANG Pengfei. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 10-17. | |
2 | BATISTA Elsa. Metrology for drug delivery[EB/OL]. (2021-05-26)[2023-08-08]. . |
3 | BATISTA E, FURTADO A, PEREIRA J, et al. New EMPIR project-metrology for drug delivery[J]. Flow Measurement and Instrumentation, 2020, 72: 101716. |
4 | BATISTA Elsa, SOUSA João A, CARDOSO Susana, et al. Experimental testing for metrological traceability and accuracy of liquid microflows and microfluidics[J]. Flow Measurement and Instrumentation, 2020, 71: 101691. |
5 | 中国计量科学研究院. 0.01~200m3 /h水流量基准装置[EB/OL]. (2017-08-16) [2023-08-08]. . |
Chinese Academy of Metrology. 01—200m3 /h water flow reference device [EB/OL]. (2017-08-16) [2023-08-08] . | |
6 | 中华人民共和国国家发展和改革委员会计量发展规划( 2021—2035年)[EB/OL]. . |
National Development and Reform Commission Metrological development plan (2021—2035)[EB/OL]. . | |
7 | 关于加强国家现代先进测量体系建设的指导意见[M]. 市场监管总局、科技部、工业和信息化部、国资委、知识产权局, 2022: 国市监计量发〔2021〕2086号. |
Guiding Opinions on Strengthening the Construction of National Modern Advanced Measurement System[M]. State Administration for Market Regulation, Ministry of Science and Technology, Ministry of Industry and Information Technology, State-owned Assets Supervision and Administration Commission, Intellectual Property Office, 2022: | |
State Market Supervision and Metrology 〔2021〕 2086. | |
8 | 蔡洁, 海宁, 林峰. 静态质量法水流量标准装置校准流量计不确定度分析的讨论[J]. 工业计量, 2013, 23(4): 60-63. |
CAI Jie, Ning HAI, LIN Feng. Discussion on uncertainty analysis of calibration flowmeter of static mass method water flow standard device[J]. Industrial Measurement, 2013, 23(4): 60-63. | |
9 | 杨潇萍. 静态质量法与动态质量法流量标准装置的比较[J]. 油气田地面工程, 2015, 34(4): 60-61. |
YANG Xiaoping. Comparison of flow standard devices between static mass method and dynamic mass method[J]. Oil-Gas Field Surface Engineering, 2015, 34(4): 60-61. | |
10 | 吴安意. 动态质量法水流量标准装置[J]. 自动化仪表, 1982, 3(2): 40, 42-44, 61. |
WU Anyi. Dynamic mass method water flow standard device[J]. Process Automation Instrumentation, 1982, 3(2): 40, 42-44, 61. | |
11 | 周兵, 张宏魁. 静态容积法水表自动检定装置[J]. 计量技术, 2008(10): 41-44. |
ZHOU Bing, ZHANG Hongkui. Automatic verification device for static volumetric water meter[J]. Measurement Technique, 2008(10): 41-44. | |
12 | 赵建亮, 祝新伟, 何爱珍. 动态容积法水表校准装置的研究[J]. 计量技术, 2004(6): 19-21. |
ZHAO Jianliang, ZHU Xinwei, HE Aizhen. Research on calibration device of dynamic volumetric water meter[J]. Measurement Technique, 2004(6): 19-21. | |
13 | AHRENS Martin, NESTLER Bodo, KLEIN Stephan, et al. An experimental setup for traceable measurement and calibration of liquid flow rates down to 5nL/min[J]. Biomedizinische Technik Biomedical Engineering, 2015, 60(4): 337-345. |
14 | BATISTA Elsa, GODINHO Isabel, MARTINS Rui F, et al. Development of an experimental setup for microflow measurement using interferometry[J]. Flow Measurement and Instrumentation, 2020, 75: 101789. |
15 | ETMINAN Amin, MUZYCHKA Yuri S, POPE Kevin, et al. Flow visualization: State-of-the-art development of micro-particle image velocimetry[J]. Measurement Science and Technology, 2022, 33(9): 092002. |
16 | MILLS Chris, BATISTA Elsa, BISSIG Hugo, et al. Calibration methods for flow rates down to 5nL/min and validation methodology[J]. Biomedizinische Technik, 2023, 68(1): 13-27. |
17 | CAVANIOL C, CESAR W, DESCROIX S, et al. Flowmetering for microfluidics[J]. Lab on a Chip, 2022, 22(19): 3603-3617. |
18 | LEGER L, JOANNY J F. Liquid spreading[J]. Reports on Progress in Physics, 1992, 55(4): 431-486. |
19 | JOANNY J F, DE GENNES P G. A model for contact angle hysteresis[J]. The Journal of Chemical Physics, 1984, 81(1): 552-562. |
20 | BISSIG Hugo, PETTER Harm Tido, LUCAS Peter, et al. Primary standards for measuring flow rates from 100nL/min to 1mL/min—Gravimetric principle[J]. Biomedizinische Technik Biomedical Engineering, 2015, 60(4): 301-316. |
21 | AHRENS M, KLEIN St, NESTLER B, et al. Design and uncertainty assessment of a setup for calibration of microfluidic devices down to 5 nL·min-1 [J]. Measurement Science and Technology, 2014, 25(1): 015301. |
22 | OGHEARD F, CASSETTE P, BOUDAOUD A W. Development of an optical measurement method for “sampled” micro-volumes and nano-flow rates[J]. Flow Measurement and Instrumentation, 2020, 73: 101746. |
23 | BATISTA Elsa, SOUSA João A, Miguel ÁLVARES, et al. Development of an experimental setup for micro flow measurement using the front tracking method[J]. Measurement: Sensors, 2021, 18: 100152. |
24 | BATISTA Elsa, FURTADO Andreia, CÉU FERREIRA Maria DO, et al. Uncertainty calculations in optical methods used for micro flow measurement[J]. Measurement: Sensors, 2021, 18: 100155. |
25 | 张旭东, 刘香斌, 吴月艳. 量块测量技术进展[J]. 计量学报, 2017, 38(S1): 1-5. |
ZHANG Xudong, LIU Xiangbin, WU Yueyan. Progress of gauge block measurement technology[J]. Acta Metrologica Sinica, 2017, 38(S1): 1-5. | |
26 | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. | |
27 | SANTIAGO J G, WERELEY S T, MEINHART C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 1998, 25(4): 316-319. |
28 | KINOSHITA Haruyuki, KANEDA Shohei, FUJII Teruo, et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab on a Chip, 2007, 7(3): 338-346. |
29 | MIOTTO Guilherme, THIEMANN Kerstin, ROMBACH Markus, et al. Holographic PIV/PTV for nano flow rates—A study in the 70 to 200 nL/min range[J]. Biomedizinische Technik Biomedical Engineering, 2023, 68(1): 97-107. |
30 | Jürgen CZARSKE, Lars BÜTTNER, RAZIK Thorsten, et al. Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution[J]. Measurement Science and Technology, 2002, 13(12): 1979-1989. |
31 | ZHANG Lingxin, CHENG Xinsheng, TU Han, et al. Measurement of two-phase velocities in bubble flows using laser Doppler velocimetry[J]. Journal of Hydrodynamics, 2022, 34(6): 1134-1144. |
32 | TRUFFER Frederic, GEISER Martial, CHAPPELET Marc-Antoine, et al. Absolute retinal blood flowmeter using a laser Doppler velocimeter combined with adaptive optics[J]. Journal of Biomedical Optics, 2020, 25(11): 115002. |
[1] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[2] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[3] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[4] | LIU Weixiao, LIU Yang, GAO Fulei, WANG Wei, WANG Yinglei. Application of microreactor in synthesis and quality improvement of energetic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. |
[5] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[6] | WU Xia, JIANG Xuntao, ZHANG Yuxiao, LYU Huiyuan, HUANG Fang, YU Xiaoxi. Protein crystallization research based on droplet microfluidics [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2024-2030. |
[7] | WANG Deqiang, LI Jinzhong, WANG Kai, LUO Guangsheng. Microreaction continuous synthesis and application of bromine chloride [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5585-5591. |
[8] | JIANG Shengkun, HAN Bo, ZHAO Xin, YU Wanhe, LUO Guangsheng, DENG Jian, LIU Guangqi, WANG Jingqi, WANG Jinbo. Preparation of mononitrotoluene by continuous adiabatic nitration of excess toluene in microreactor [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2910-2914. |
[9] | YAN Lifang, CHU Bozhao, ZHONG Siqing, CHENG Yi. Synthesis of N-vinyl pyrrolidone by acetylene process in a microreactor [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2902-2909. |
[10] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[11] | WANG Deqiang, SUN Chao, WANG Kai, LUO Guangsheng. One-step continuous synthesis of anisole in microreactor [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6255-6260. |
[12] | WANG Yanqian, WANG Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 185-191. |
[13] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[14] | ZHU Xiao, SHEN Laihong, SHEN Tianxu, YAN Jingchun. Flow characteristics in a chemical-looping-combustion tower reactor [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4144-4151. |
[15] | LIU Meihua, LIU Xuedong, XU Xiaodong, PENG Tao, GU Yutong, JIANG Wei. Bed surface monitoring system for catalyst dense loading process in fixed bed reactor [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3617-3625. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |