Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 529-540.DOI: 10.16085/j.issn.1000-6613.2023-0258
• Resources and environmental engineering • Previous Articles
DAI Hongjing1,2(), MA Xuehu1(), WANG Sifang2
Received:
2023-02-24
Revised:
2023-05-26
Online:
2024-02-05
Published:
2024-01-20
Contact:
MA Xuehu
通讯作者:
马学虎
作者简介:
代洪静(1988—),女,博士研究生,高级工程师,研究方向为能源与环保技术。E-mail:daihongjingcfhi@163.com。
基金资助:
CLC Number:
DAI Hongjing, MA Xuehu, WANG Sifang. Adsorption technology and materials for the treatment of low and intermediate level radioactive wastewater[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 529-540.
代洪静, 马学虎, 王四芳. 低中放射性废水处理吸附技术及材料[J]. 化工进展, 2024, 43(1): 529-540.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0258
吸附剂 | 制备方法 | 材料尺寸/μm | 比表面积/m2·g-1 | 活性成分含量 | 平衡时间/h | 吸附容量/mg·g-1 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|
锶 | 铯 | 钴 | |||||||
果壳炭-天然沸石 | 逐层黏结 | 400 | 34.93 | 33% | 3.0 | 95.6 | — | — | [ |
果壳炭/合成沸石 | 水热 | 400 | 89.17 | 20% | 3.0 | 91.2 | — | — | |
KNICF/GAC | 沉淀浸渍 | 400 | 694 | — | 5.0 | 13.2 | 49.7 | 0.1 | [ |
GAC | 400 | 1099 | 100% | 5.0 | 13.2 | 11.1 | 1.0 | ||
PB/NHPC | 沉淀 | 600 | 1884 | — | 2.0 | — | 100.0 | — | [ |
斜发沸石/果壳炭 | 浸渍 | 325 | — | 19% | 2.0 | — | 27.7 | — | [ |
BC | 热解 | 500 | 6.69 | 100% | 3 | — | 12.9 | 4.4 | [ |
AC-HAp | 表面合成 | — | — | — | 2.0 | 69.49 | — | — | [ |
C4BisC6/MMCs-P | 热聚合 | 500 | — | 28.4% | 3.0 | — | 22.7 | — | [ |
ACC/GO | 真空过滤 | — | 744 | — | — | — | 22.9 | 16.7 | [ |
MMT-PB | 共沉淀 | — | 259.26 | — | 2.0 | — | 57.47 | — | [ |
AMP/沸石/SiO2 | 浸渍/冻干 | 100 | 72.2 | 32% | 0.5 | — | 99% | — | [ |
hf-TiFC | 水热 | 500 | 63.89 | 16% | — | — | 454.54 | — | [ |
沸石/PAN | 喷嘴滴加 | 500 | — | 80% | — | 98.1 | 214.1 | — | [ |
AMP-PAN | 热凝胶 | 1500 | 32.69 | 70% | 2.0 | 16.2 | 81.4 | 9.4 | [ |
AMP-PAN-N20 | 凝胶制孔 | 1000 | — | 76.1% | 8.0 | — | 55.05 | — | [ |
KNiFC/PAN | 微震喷射 | 400 | — | 80% | 4.0 | — | 123.0 | — | [ |
Zr-Mn/PAN | 混合滴加 | 2500 | 215.5 | 16% | 4.0 | — | 21.37 | — | [ |
ALG/RF | 热凝胶 | 2000 | 568.45 | — | 4.0 | 490.2 | - | — | [ |
GO-ALG | 凝胶 | 2500 | — | — | 2.0 | — | 144.3 | — | [ |
沸石/ALG | 框架凝胶 | — | 1.39 | 10% | 6.0 | 22.0 | — | — | [ |
zeolite@ALG-Ca | 静电喷射 | 1750 | — | — | 10.0 | 83.3 | — | — | [ |
AMP/ALG | 凝胶 | — | — | 66% | 5.0 | — | 91.8 | — | [ |
Co/Mn-CCTS | 溶胶+反相悬浮 | 650 | — | — | 8.0 | — | — | 17.13 | [ |
NSC@MS-4A | 凝胶 | 100 | 77.07 | 57% | 1.7 | 44.2 | 101.8 | — | [ |
TiO2/CTS | 水热 | 1750 | — | 50% | 24.0 | 84.6 | — | — | [ |
HAp-CTS | 静电喷射 | 650 | 37.84 | 4% | 4.0 | 234.2 | — | — | [ |
CMC/PB-K/PEG | 交联聚合 | 1000 | 33.96 | 10% | 24.0 | — | 149.8 | — | [ |
CMC/PB-La | 凝胶 | 1100 | — | 73% | 5.0 | — | 35.2 | — | [ |
mag@silica-CIP | 离子印迹 | — | 158.4 | — | — | — | — | 78.9 | [ |
PB-HAp-Mas | 微喷射 | 475 | — | — | 2.0 | 29.25 | 24.59 | — | [ |
吸附剂 | 制备方法 | 材料尺寸/μm | 比表面积/m2·g-1 | 活性成分含量 | 平衡时间/h | 吸附容量/mg·g-1 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|
锶 | 铯 | 钴 | |||||||
果壳炭-天然沸石 | 逐层黏结 | 400 | 34.93 | 33% | 3.0 | 95.6 | — | — | [ |
果壳炭/合成沸石 | 水热 | 400 | 89.17 | 20% | 3.0 | 91.2 | — | — | |
KNICF/GAC | 沉淀浸渍 | 400 | 694 | — | 5.0 | 13.2 | 49.7 | 0.1 | [ |
GAC | 400 | 1099 | 100% | 5.0 | 13.2 | 11.1 | 1.0 | ||
PB/NHPC | 沉淀 | 600 | 1884 | — | 2.0 | — | 100.0 | — | [ |
斜发沸石/果壳炭 | 浸渍 | 325 | — | 19% | 2.0 | — | 27.7 | — | [ |
BC | 热解 | 500 | 6.69 | 100% | 3 | — | 12.9 | 4.4 | [ |
AC-HAp | 表面合成 | — | — | — | 2.0 | 69.49 | — | — | [ |
C4BisC6/MMCs-P | 热聚合 | 500 | — | 28.4% | 3.0 | — | 22.7 | — | [ |
ACC/GO | 真空过滤 | — | 744 | — | — | — | 22.9 | 16.7 | [ |
MMT-PB | 共沉淀 | — | 259.26 | — | 2.0 | — | 57.47 | — | [ |
AMP/沸石/SiO2 | 浸渍/冻干 | 100 | 72.2 | 32% | 0.5 | — | 99% | — | [ |
hf-TiFC | 水热 | 500 | 63.89 | 16% | — | — | 454.54 | — | [ |
沸石/PAN | 喷嘴滴加 | 500 | — | 80% | — | 98.1 | 214.1 | — | [ |
AMP-PAN | 热凝胶 | 1500 | 32.69 | 70% | 2.0 | 16.2 | 81.4 | 9.4 | [ |
AMP-PAN-N20 | 凝胶制孔 | 1000 | — | 76.1% | 8.0 | — | 55.05 | — | [ |
KNiFC/PAN | 微震喷射 | 400 | — | 80% | 4.0 | — | 123.0 | — | [ |
Zr-Mn/PAN | 混合滴加 | 2500 | 215.5 | 16% | 4.0 | — | 21.37 | — | [ |
ALG/RF | 热凝胶 | 2000 | 568.45 | — | 4.0 | 490.2 | - | — | [ |
GO-ALG | 凝胶 | 2500 | — | — | 2.0 | — | 144.3 | — | [ |
沸石/ALG | 框架凝胶 | — | 1.39 | 10% | 6.0 | 22.0 | — | — | [ |
zeolite@ALG-Ca | 静电喷射 | 1750 | — | — | 10.0 | 83.3 | — | — | [ |
AMP/ALG | 凝胶 | — | — | 66% | 5.0 | — | 91.8 | — | [ |
Co/Mn-CCTS | 溶胶+反相悬浮 | 650 | — | — | 8.0 | — | — | 17.13 | [ |
NSC@MS-4A | 凝胶 | 100 | 77.07 | 57% | 1.7 | 44.2 | 101.8 | — | [ |
TiO2/CTS | 水热 | 1750 | — | 50% | 24.0 | 84.6 | — | — | [ |
HAp-CTS | 静电喷射 | 650 | 37.84 | 4% | 4.0 | 234.2 | — | — | [ |
CMC/PB-K/PEG | 交联聚合 | 1000 | 33.96 | 10% | 24.0 | — | 149.8 | — | [ |
CMC/PB-La | 凝胶 | 1100 | — | 73% | 5.0 | — | 35.2 | — | [ |
mag@silica-CIP | 离子印迹 | — | 158.4 | — | — | — | — | 78.9 | [ |
PB-HAp-Mas | 微喷射 | 475 | — | — | 2.0 | 29.25 | 24.59 | — | [ |
103 | DING Baojun, WANG Ziwei, WANG Xintong, et al. Sr2+ adsorbents produced by microfluidics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613: 126072. |
104 | KAMBLE Priyanka, SINHAROY Prithwish, PAHAN Sumit, et al. Synthesis and characterization of chitosan-sodium titanate nanocomposite beads for separation of radionuclides from aqueous radioactive waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327(2): 691-698. |
105 | HU Baiyang, FUGETSU Bunshi, YU Hongwen, et al. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium[J]. Journal of Hazardous Materials, 2012, 217/218: 85-91. |
106 | TSAI Chengjui, CHANG Yinru, CHEN Manli, et al. Stable poly(vinyl alcohol) and alginate cross-linked granules with immobilized ferric hexacyanoferrate for cesium removal from waters[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 1-10. |
107 | FENG Shi, YANG Wenbo, ZHANG Lijing, et al. Casein-hydroxyapatite composite microspheres for strontium-containing wastewater treatment[J]. ACS ES&T Water, 2021, 1(4): 900-909. |
108 | ZONG Youli, ZHANG Yongde, LIN Xiaoyan, et al. Preparation of a novel microsphere adsorbent of prussian blue capsulated in carboxymethyl cellulose sodium for Cs(Ⅰ) removal from contaminated water[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(3): 1577-1591. |
109 | HU Jiayin, CHEN Shangqing, ZHANG Ningluo, et al. Porous composite CMC-KCuFC-PEG spheres for efficient cesium removal from wastewater[J]. New Journal of Chemistry, 2019, 43(24): 9658-9665. |
110 | Joanna BOK-BADURA, Alicja KAZEK-KĘSIK, Krzysztof KAROŃ, et al. Highly efficient copper hexacyanoferrate-embedded pectin sorbent for radioactive cesium ions removal[J]. Water Resources and Industry, 2022, 28: 100190. |
111 | 顾恩熙, 付凌霄, 王焕. 废水中去除银胶体的负载Fe3+树脂氧化法性能研究[J]. 核技术, 2019, 42(7):29-35. |
GU Enxi, FU Lingxiao, WANG Huan. Fe3+ loaded resin for removal of Ag colloid by oxidation method from waste water[J]. Nuclear Techniques, 2019, 42(07): 29-35. | |
112 | 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能[J]. 环境化学, 2021, 40(3): 779-789. |
DU Mingyang, ZOU Jing, DOU Junfeng, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium[J]. Environmental Chemistry, 2021, 40(3): 779-789. | |
113 | CHOI J W, LEE H K, CHOI S J. Magnetite double-network composite using hydroxyapatite-manganese dioxide for Sr2+ removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105360. |
114 | LEE H K, CHOI J W, CHOI S J. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(Ⅱ) from radioactive wastewater[J]. Separation Science and Technology, 2021, 56(11): 1842-1852. |
115 | MAJIDNIA Zohreh, IDRIS Ani. Evaluation of cesium removal from radioactive waste water using maghemite PVA-alginate beads[J]. Chemical Engineering Journal, 2015, 262: 372-382. |
116 | BOUKHALFA N, DARDER M, BOUTAHALA M, et al. Composite nanoarchitectonics: Alginate beads encapsulating sepiolite/magnetite/prussian blue for removal of cesium ions from water[J]. Bulletin of the Chemical Society of Japan, 2021, 94(1): 122-132. |
117 | PARK B, GHOREISHIAN S M, KIM Y, et al. Dual-functional micro-adsorbents: Application for simultaneous adsorption of cesium and strontium[J]. Chemosphere, 2021, 263: 128266. |
118 | ZHANG Kun, LI Hailong, LI Zhanguo, et al. Molecular dynamics and density functional theory simulations of cesium and strontium adsorption on illite/smectite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(7): 2983-2992. |
119 | ZENG Jianping, ZHANG Yan, CHEN Yuhang, et al. Molecular dynamics simulation of the adsorption properties of graphene oxide/graphene composite for alkali metal ions[J]. Journal of Molecular Graphics and Modelling, 2022, 114: 108184. |
120 | KHANMOHAMMADI Hossein, BAYATI Behrouz, Javad RAHBAR-SHAHROUZI, et al. Molecular simulation of the ion exchange behavior of Cu2+, Cd2+ and Pb2+ ions on different zeolites exchanged with sodium[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103040. |
1 | MURDOCK C E. Public health in a radioactive age: Environmental pollution, popular therapies, and narratives of danger in the federal republic of Germany, 1949—1970[J]. Central European History, 2019, 52(1): 45-64. |
2 | CAO Yiyao, ZHOU Lei, REN Hong, et al. Determination, separation and application of 137Cs: A review[J]. International Journal of Environmental Research and Public Health, 2022, 19(16): 10183. |
3 | OTHMAN Zaki. Performance improvement of a radioactive forced circulation evaporator system[J]. Arab Journal of Nuclear Sciences and Applications, 2016, 49(1): 76-86. |
4 | BENGIAT Ravell, BOGOSLAVSKY Benny, MANDLER Daniel, et al. Selective binding and precipitation of cesium ions from aqueous solutions: A size-driven supramolecular reaction[J]. Chemistry—A European Journal, 2018, 24(13): 3161-3164. |
5 | COMBERNOUX Nicolas, SCHRIVE Luc, LABED Véronique, et al. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale[J]. Water Research, 2017, 123: 311-320. |
6 | BANERJEE D, SANDHYA U, SUMIT P, et al. Removal of 137Cs and 90Sr from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(1): 893-902. |
7 | FISKUM S K, PEASE L F, PETERSON R A. Review of ion exchange technologies for cesium removal from caustic tank waste[J]. Solvent Extraction and Ion Exchange, 2020, 38(6): 573-611. |
8 | HIMANSHU Patel. Fixed-bed column adsorption study: A comprehensive review[J]. Applied Water Science, 2019, 9(3): 45. |
9 | LEHTO Jukka, KOIVULA Risto, LEINONEN Heikki, et al. Removal of radionuclides from fukushima daiichi waste effluents[J]. Separation & Purification Reviews, 2019, 48(2): 122-142. |
10 | LI Xindai, XU Guangming, XIA Meng, et al. Research on the remediation of cesium pollution by adsorption: Insights from bibliometric analysis[J]. Chemosphere, 2022, 308: 136445. |
11 | ZHANG Xiaoyuan, LIU Yu. Nanomaterials for radioactive wastewater decontamination[J]. Environmental Science: Nano, 2020, 7(4): 1008-1040. |
12 | 张丽莹, 李晓静, 曾进忠, 等. 华龙一号活化腐蚀产物沉积源项评估[J]. 辐射防护, 2019, 39(3): 192-197. |
ZHANG Liying, LI Xiaojing, ZENG Jinzhong, et al. Assessment of deposit source term of activated corrosion products for HPR1000 nuclear power plants[J]. Radiation Protection, 2019, 39(3): 192-197. | |
13 | SIROUX Brice, WISSOCQ Aubéry, BEAUCAIRE Catherine, et al. Adsorption of strontium and caesium onto an Na-illite and Na-illite/Na-smectite mixtures: Implementation and application of a multi-site ion-exchange model[J]. Applied Geochemistry, 2018, 99: 65-74. |
14 | PARK S M, ALESSI D S, BAEK K. Selective adsorption and irreversible fixation behavior of cesium onto 2∶1 layered clay mineral: A mini review[J]. Journal of Hazardous Materials, 2019, 369: 569-576. |
15 | 马鸿宾, 魏新渝, 熊小伟, 等. 离子交换技术去除核电厂放射性废液中痕量核素研究进展[J]. 水处理技术, 2016, 42(1): 7-11, 19. |
MA Hongbin, WEI Xinyu, XIONG Xiaowei, et al. Research progress of application of ion exchange technology on the removal of trace radionuclides from liquid radioactive waste innuclear power plant[J]. Technology of Water Treatment, 2016, 42(1): 7-11, 19. | |
16 | 李富海, 梁维江, 方军, 等. 模拟Co胶体在压水堆停堆氧化运行期间的溶解行为研究[J]. 原子能科学技术, 2022, 56(10): 1996-2003. |
LI Fuhai, LIANG Weijiang, FANG Jun, et al. Dissolution behavior of simulated Co colloid in oxidation operation process during shutdown of PWRs[J]. Atomic Energy Science and Technology, 2022, 56(10): 1996-2003. | |
17 | SONWALKAR V M, MOHANTA S, PAL S K, et al. Identification of the contributors (Ag-110m) for higher radiation field on primary heat transport system of Tarapur Atomic Power Station-3 and its impact on collective dose[J]. Radiation Protection and Environment, 2018, 41(2): 66. |
18 | 刘昱, 刘佩, 张明乾. 压水堆核电站废液处理系统的比较[J]. 辐射防护, 2010, 30(1): 42-47. |
LIU Yu, LIU Pei, ZHANG Mingqian. Comparison of liquid radwaste treatment systems at pressurized water reactor nuclear power plant[J]. Radiation Protection, 2010, 30(1): 42-47. | |
19 | 魏新渝, 马鸿宾, 熊小伟, 等. 反渗透技术去除核电厂放射性废液中痕量核素的研究进展[J]. 水处理技术, 2015, 41(12): 10-14, 19. |
WEI Xinyu, MA Hongbin, XIONG Xiaowei, et al. Research progress of application of RO technology in the removal of trace radionuclides from radioactive liquid waste of nuclear power plant[J]. Technology of Water Treatment, 2015, 41(12): 10-14, 19. | |
20 | CHEN Zongyuan, WANG Siyuan, HOU Huijuan, et al. China's progress in radionuclide migration study over the past decade (2010—2021): Sorption, transport and radioactive colloid[J]. Chinese Chemical Letters, 2022, 33(7): 3405-3412. |
21 | KIM K W, BAEK Y J, LEE K Y, et al. Treatment of radioactive waste seawater by coagulation-flocculation method using ferric hydroxide and poly acrylamide[J]. Journal of Nuclear Science and Technology, 2016, 53(3): 439-450. |
22 | KIM K W, SHON W J, OH M K, et al. Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater[J]. Nuclear Engineering and Technology, 2019, 51(3): 738-745. |
23 | XU Yao, GU Ping, ZHANG Guanghui, et al. Investigation of coagulation as a pretreatment for microfiltration in cesium removal by copper ferrocyanide adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313(2): 435-444. |
24 | ZHANG Mingdong, GU Ping, YAN Su, et al. Effective removal of radioactive cobalt from aqueous solution by a layered metal sulfide adsorbent: Mechanism, adsorption performance, and practical application[J]. Separation and Purification Technology, 2021, 256: 117775. |
25 | 李元, 林建中, 汤东升, 等. 沉淀絮凝—吸附处理放射性废水的模拟实验[J]. 南方能源建设, 2015, 2(4): 81-87. |
LI Yuan, LIN Jianzhong, TANG Dongsheng, et al. Flocculation and adsorption experiment for treatment of simulated radioactive wastewater[J]. Southern Energy Construction, 2015, 2(4): 81-87. | |
26 | 李俊雄, 顾健, 王晓伟, 等. 内陆AP1000核电厂放射性废液处理系统设计改进[J]. 电力建设, 2014, 35(4): 96-100. |
LI Junxiong, GU Jian, WANG Xiaowei, et al. Design improvement of radioactive waste liquid processing system in inland AP1000 nuclear power plant[J]. Electric Power Construction, 2014, 35(4): 96-100. | |
27 | CHUA Siewfen, NOURI Alireza, Weilun ANG, et al. The emergence of multifunctional adsorbents and their role in environmental remediation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104793. |
28 | AHMAD W A, SHAHADAT M, WAZED A S, et al. Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: A review [J]. Journal of Molecular Liquids, 2022, 365: 119976. |
29 | 陈思璠, 尉继英, 赵璇. 离子交换树脂去除模拟放射性废液中的铯[J]. 应用化学, 2019, 36(1): 41-50. |
CHEN Sifan, WEI Jiying, ZHAO Xuan. Removal of cesium by ion exchange resins in simulated radioactive wastewater[J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 41-50. | |
30 | WANG Jianlong, ZHUANG Shuting. Removal of cesium ions from aqueous solutions using various separation technologies[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(2): 231-269. |
31 | PUTRA D I, OCHIAI S, TOMIHARA S, et al. Determination of low level 137Cs in environmental water sample using AMP method and a review comparing with other adsorbents[J]. Journal of Hunan University Natural Sciences, 2021, 48(6). |
32 | LI Juexuan, ZAN Yongxi, ZHANG Zhengping, et al. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium[J]. Journal of Hazardous Materials, 2020, 385: 121568. |
33 | JIN Wanqin, TOUTIANOUSH Ali, PYRASCH Mario, et al. Self-assembled films of Prussian blue and analogues: Structure and morphology, elemental composition, film growth, and nanosieving of ions[J]. The Journal of Physical Chemistry B, 2003, 107(44): 12062-12070. |
34 | WU Xinyue, RU Yue, BAI Yang, et al. PBA composites and their derivatives in energy and environmental applications[J]. Coordination Chemistry Reviews, 2022, 451: 214260. |
35 | YAO Chuqing, DAI Yaodong, CHANG Shuquan, et al. Removal of cesium and strontium for radioactive wastewater by Prussian blue nanorods[J]. Environmental Science and Pollution Research, 2023, 30(13): 36807-36823. |
36 | BALASOORIYA I L, CHEN J, KORALE G S, et al. Applications of nano hydroxyapatite as adsorbents: A review [J]. Nanomaterials, 2022, 12(14): 2324. |
37 | METWALLY S S, AHMED I M, RIZK H E. Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution[J]. Journal of Alloys and Compounds, 2017, 709: 438-444. |
38 | SIHN Youngho, YANG Hee-Man, PARK Chan Woo, et al. Post-substitution of magnesium at CaI of nano-hydroxyapatite surface for highly efficient and selective removal of radioactive 90Sr from groundwater[J]. Chemosphere, 2022, 295: 133874. |
39 | HANDLEY-SIDHU S, MULLAN T K, GRAIL Q, et al. Influence of pH, competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite[J]. Scientific Reports, 2016, 6: 23361. |
40 | TAN Liqiang, WANG Song, DU Weigang, et al. Effect of water chemistries on adsorption of Cs(I) onto graphene oxide investigated by batch and modeling techniques[J]. Chemical Engineering Journal, 2016, 292: 92-97. |
41 | SIROUX Brice, BEAUCAIRE Catherine, TABARANT Michel, et al. Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of a coherent thermodynamic modelling[J]. Applied Geochemistry, 2017, 87: 167-175. |
42 | CLAVERIE Marie, GARCIA Just, PREVOST Thierry, et al. Inorganic and hybrid (organic-inorganic) lamellar materials for heavy metals and radionuclides capture in energy wastes management—A review[J]. Materials, 2019, 12(9): 1399. |
43 | YANG Shubin, OKADA Naoya, NAGATSU Masaaki. The highly effective removal of Cs+ by low turbidity chitosan-grafted magnetic bentonite[J]. Journal of Hazardous Materials, 2016, 301: 8-16. |
44 | OKUMURA Masahiko, NAKAMURA Hiroki, MACHIDA Masahiko. Mechanism of strong affinity of clay minerals to radioactive cesium: First-principles calculation study for adsorption of cesium at frayed edge sites in muscovite[J]. Journal of the Physical Society of Japan, 2013, 82(3): 0338002. |
45 | PARK S M, LEE J, JEON E K, et al. Adsorption characteristics of cesium on the clay minerals: Structural change under wetting and drying condition[J]. Geoderma, 2019, 340: 49-54. |
46 | FANG Xianghong, FANG Fang, LU Chunhai, et al. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites[J]. Nuclear Engineering and Technology, 2017, 49(3): 556-561. |
47 | OSMANLIOGLU A E. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey[J]. Journal of Hazardous Materials, 2006, 137(1): 332-335. |
48 | ALBY Delhia, CHARNAY Clarence, HERAN Marc, et al. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity—A review[J]. Journal of Hazardous Materials, 2018, 344: 511-530. |
49 | YANG H M, JEON H, LEE Y, et al. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium[J]. Chemosphere, 2022, 299: 134309. |
50 | ZHENG Wei, FENG Sheng, FENG Shanshan, et al. A novel S-doped PB/GO nanocomposite for efficient adsorption and removal of cesium ions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(2): 879-891. |
51 | XING Min, ZHUANG Shuting, WANG Jianlong. Adsorptive removal of strontium ions from aqueous solution by graphene oxide[J]. Environmental Science and Pollution Research, 2019, 26(29): 29669-29678. |
52 | FANG Fang, KONG Lingtao, HUANG Jiarui, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials, 2014, 270: 1-10. |
53 | 曹林园, 王辉, 张鹏, 等. 功能化石墨烯吸附模拟反应堆冷却剂中银的研究[J]. 原子能科学技术, 2020, 54(4): 663-670. |
CAO Linyuan, WANG Hui, ZHANG Peng, et al. Adsorption behavior of silver on functional graphene in simulated reactor coolant[J]. Atomic Energy Science and Technology, 2020, 54(4): 663-670. | |
54 | XING Min, WANG Jianlong. Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(Ⅱ) removal from aqueous solution[J]. Journal of Colloid and Interface Science, 2016, 474: 119-128. |
55 | WEN Tao, WU Xilin, LIU Mancheng, et al. Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J]. Dalton Transactions, 2014, 43(20): 7464-7472. |
56 | BOLISETTY Sreenath, MEZZENGA Raffaele. Amyloid-carbon hybrid membranes for universal water purification[J]. Nature Nanotechnology, 2016, 11(4): 365-371. |
57 | KWAK C H, LIM C, KIM S, et al. Surface modification of carbon materials and its application as adsorbents[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 21-31. |
58 | 李琦, 苟全录, 余小东. 海阳核电厂(AP1000机组)放射性废物管理系统建设探讨[J]. 辐射防护, 2018, 38(1): 80-87. |
LI Qi, GOU Quanlu, YU Xiaodong. Discussion on construction of a radwaste management system in Haiyang Nuclear Power Plant (AP1000)[J]. Radiation Protection, 2018, 38(1): 80-87. | |
59 | HO K, PARK D, PARK M K, et al. Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures[J]. Chemical Engineering Journal, 2020, 396: 125215. |
60 | ALEXEY Makarov, ALEXEY Safonov, ANASTASIIA Sitanskaia, et al. Clay and carbon materials-based engineered barriers for technetium immobilization[J]. Progress in Nuclear Energy, 2022, 152: 104398. |
61 | HARO-DEL R D A, AL-JOUBORI S, KONTOGIANNIS O, et al. The removal of caesium ions using supported clinoptilolite[J]. Journal of Hazardous Materials, 2015, 289: 1-8. |
62 | DONG Zhimin, LI Zifan, ZENG Dongling, et al. Highly selective adsorption of radioactive cesium by novel calix[4] biscrown-6 functionalized millimetre-sized hierarchically porous carbon spheres[J]. Separation and Purification Technology, 2023, 304: 122255. |
63 | BALLOVA S, PIPÍŠKA M, FRIŠTÁK V, et al. Pyrogenic carbon for decontamination of low-level radioactive effluents: Simultaneous separation of 137Cs and 60Co[J]. Progress in Nuclear Energy, 2020, 129: 103484. |
64 | DASHTINEJAD Maryam, SAMADFAM Mohammad, FASIHI Javad, et al. Synthesis, characterization, and cesium sorption performance of potassium nickel hexacyanoferrate-loaded granular activated carbon[J]. Particulate Science and Technology, 2014, 32(4): 348-354. |
65 | VANDERHEYDEN S R, YPERMAN J, CARLEER R, et al. Enhanced cesium removal from real matrices by nickel-hexacyanoferrate modified activated carbons[J]. Chemosphere, 2018, 202: 569-575. |
66 | Daemin OH, KIM Bokseong, KANG Sungwon, et al. Enhanced immobilization of Prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive cesium adsorption[J]. Scientific Reports, 2019, 9: 16334. |
67 | SEO Younggyo, HWANG Yuhoon. Prussian blue immobilized on covalent organic polymer-grafted granular activated carbon for cesium adsorption from water[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105950. |
68 | AL-JUBOURI S M, CURRY N A, HOLMES S M. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste[J]. Journal of Hazardous Materials, 2016, 320: 241-251. |
69 | HUANG Tao, CAO Zhenxing, JIN Junxun, et al. Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system[J]. Journal of Environmental Management, 2021, 280: 111697. |
70 | LIU Xiaojing, WANG Jianlong. Electro-assisted adsorption of Cs(Ⅰ) and Co(Ⅱ) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode[J]. Science of The Total Environment, 2020, 749: 141524. |
71 | ALAMUDY H A, CHO K. Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid[J]. Chemical Engineering Journal, 2018, 349: 595-602. |
72 | MARTIN Pipíška, Florková EVA, PETER Nemeček, et al. Evaluation of Co and Zn competitive sorption by zeolitic material synthesized from fly ash using 60Co and 65Zn as radioindicators[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(3): 855-867. |
73 | NAYL A A, AHMED I M, ABD-ELHAMID A I, et al. Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials[J]. Separation and Purification Technology, 2020, 234: 116060. |
74 | WU Yan, ZHANG Xiaoxia, WEI Yuezhou, et al. Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent[J]. Separation and Purification Technology, 2017, 181: 76-84. |
75 | INGALE S V, RAMU R, SASTRY P U, et al. Synthesis and characterization of ammonium molybdophosphate-silica nano-composite (AMP-SiO2) as a prospective sorbent for the separation of 137Cs from nuclear waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(2): 409-415. |
76 | YOSHIDA Seiichiro, IWAMURA Shinichiroh, OGINO Isao, et al. Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)[J]. Adsorption, 2019, 25(6): 1089-1098. |
77 | SOLANGE S, ADRIANA C G, MÉLODIE T, et al. Nanoporous ammonium molybdophosphate-silica hybrids as regenerable ultra-selective extraction agents for radiocesium monitoring[J]. New Journal of Chemistry, 2013, 37(12): 3877-3880. |
78 | HUNT R D, COLLINS J L, ADU-WUSU K, et al. Monosodium titanate in hydrous titanium oxide spheres for the removal of strontium and key actinides from salt solutions at the savannah river site[J]. Separation Science and Technology, 2005, 40(14): 2933-2946. |
79 | YANG Dongjiang, LIU Hongwei, ZHENG Zhanfeng, et al. Titanate-based adsorbents for radioactive ions entrapment from water[J]. Nanoscale, 2013, 5(6): 2232-2242. |
80 | LIN Zhi, FERDOV Stanislav. Temperature and time controlled crystallization in Na2O-SiO2-TiO2-H2O system[J]. Microporous and Mesoporous Materials, 2022, 335: 111835. |
81 | YANG H M, PARK C W, KIM I, et al. Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water[J]. Chemical Engineering Journal, 2020, 392: 123713. |
82 | YUSAN Sabriye, ERENTURK Sema. Adsorption characterization of strontium on PAN/zeolite composite adsorbent[J]. World Journal of Nuclear Science and Technology, 2011, 1(1): 6-12. |
83 | FAGHIHIAN Hossein, IRAVANI Mozhgan, MOAYED Mohammad, et al. Preparation of a novel PAN-zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies[J]. Chemical Engineering Journal, 2013, 222: 41-48. |
84 | 游新锋, 李腾, 牟凌, 等. 球形亚铁氰化镍钾聚丙烯腈吸附剂的制备及应用[J]. 核化学与放射化学, 2021, 43(1): 91-98. |
YOU Xinfeng, LI Teng, MOU Ling, et al. Preparation and application of spherical ferrocyanide nickel potassium polyacrylonitrile composite adsorbent[J].Journal of Nuclear and Radiochemistry, 2021, 43(1): 91-98. | |
85 | Süleyman İNAN, Yüksel ALTAŞ. Preparation of zirconium-manganese oxide/polyacrylonitrile (Zr-Mn oxide/PAN) composite spheres and the investigation of Sr(Ⅱ) sorption by experimental design[J]. Chemical Engineering Journal, 2011, 168(3): 1263-1271. |
86 | PARK Y, LEE Y C, SHIN W S, et al. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN)[J]. Chemical Engineering Journal, 2010, 162(2): 685-695. |
87 | DING Dahu, ZHANG Zhenya, CHEN Rongzhi, et al. Selective removal of cesium by ammonium molybdophosphate-polyacrylonitrile bead and membrane[J]. Journal of Hazardous Materials, 2017, 324: 753-761. |
88 | LIU Qi, GE Haojie, LIU Can, et al. Highly selective and easily regenerated novel porous polyacrylonitrile-ammonium phosphomolybdate beads for cesium removal from geothermal water[J]. Journal of Water Process Engineering, 2022: 103339. |
89 | TRANTER T J, HERBST R S, TODD T A, et al. Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions[J]. Advances in Environmental Research, 2002, 6(2): 107-121. |
90 | 王晓伟, 梁成强, 杜志辉, 等. 聚丙烯腈基钛硅酸钠复合材料对废水中低浓度Cs+选择性吸附性能研究[J]. 海军工程大学学报, 2020, 32(4): 1-5, 21. |
WANG Xiaowei, LIANG Chengqiang, DU Zhihui, et al. Selective adsorption of low concentration Cs+ by polyacrylonitrile-based titanium silicate sodium composites[J]. Journal of Naval University of Engineering, 2020, 32(4): 1-5, 21. | |
91 | EL-NAGGAR M R, EL-SHERIF E A, MAREE R M, et al. Batch and fixed bed column investigations of the sorptive removal of cesium ions from aqueous solutions using modified graphene-alginate nanocompositebeads[J]. Journal of Radiation Research and Applied Sciences, 2021, 14(1): 146-158. |
92 | XIA Meng, ZHENG Xianming, DU Mingyang, et al. The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads[J]. Chemosphere, 2018, 203: 271-280. |
93 | YE Xiushen, WU Zhijian, LI Wu, et al. Rubidium and cesium ion adsorption by an ammonium molybdophosphate-calcium alginate composite adsorbent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342(1/2/3): 76-83. |
94 | MIMURA Hitoshi, ONODERA Yoshio. Selective uptake and recovery of cesium ions by composite columns of ammonium molybdophosphate (AMP)-calcium alginate[J]. Journal of Nuclear Science and Technology, 2002, 39(3): 282-285. |
95 | ZHANG Yahui, LIN Xiaoyan, HU Shuhong, et al. Core-shell zeolite@Alg-Ca particles for removal of strontium from aqueous solutions[J]. RSC Advances, 2016, 6(78): 73959-73973. |
96 | LAI Yuchen, CHANG Yinru, CHEN Manli, et al. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters[J]. Bioresource Technology, 2016, 214: 192-198. |
97 | DWIVEDI C, KUMAR A, JUBY K A, et al. Preparation and evaluation of alginate-assisted spherical resorcinol-formaldehyde resin beads for removal of cesium from alkaline waste[J]. Chemical Engineering Journal, 2012, 200/201/202: 491-498. |
98 | HONG H J, KIM B G, RYU J, et al. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance[J]. Journal of Environmental Management, 2018, 205: 192-200. |
99 | LI Qiang, SU Haijia, TAN Tianwei. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances[J]. Biochemical Engineering Journal, 2008, 38(2): 212-218. |
100 | CHEN Yuwei, WANG Jianlong. Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde[J]. Nuclear Science and Techniques, 2016, 27(2): 43. |
101 | 刘法邦, 贾铭椿, 门金凤, 等. 钴/锰印迹半胱氨酸-壳聚糖对低浓度Mn2+和Co2+的选择性吸附[J]. 原子能科学技术, 2015, 49(6): 984-991. |
LIU Fabang, JIA Mingchun, Jinfeng MEN, et al. Selective adsorption of Mn2+ and Co2+ in dilute solution by cobalt/manganese imprinted cysteine-chitosan[J]. Atomic Energy Science and Technology, 2015, 49(6): 984-991. | |
102 | GOYAL Nitin, GAO Peng, WANG Zhe, et al. Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium[J]. Journal of Hazardous Materials, 2020, 392: 122494. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[5] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[6] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[7] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[8] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[9] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[10] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[11] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[12] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
[13] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[14] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[15] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |