Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 111-123.DOI: 10.16085/j.issn.1000-6613.2023-1171
• Column: Chemical process intensification • Previous Articles
ZHAI Linxiao(), CUI Yizhou, LI Chengxiang, SHI Xiaogang(), GAO Jinsen, LAN Xingying
Received:
2023-07-11
Revised:
2023-09-11
Online:
2024-02-05
Published:
2024-01-20
Contact:
SHI Xiaogang
翟霖晓(), 崔怡洲, 李成祥, 石孝刚(), 高金森, 蓝兴英
通讯作者:
石孝刚
作者简介:
翟霖晓(1999—),男,硕士研究生,研究方向为油气加工工艺与工程。E-mail:zhailinxiao317@163.com。
基金资助:
CLC Number:
ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123.
翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1171
主要应用领域 | 微气泡发生器类型 | 气泡尺寸/μm | 气含率/% |
---|---|---|---|
水处理过程 | 溶气-释气式[ | 0~50 | — |
微孔曝气式[ | 10~50 | 0~30 | |
电解式[ | 约100 | — | |
耦合生物反应器 | 搅拌式[ | 20~1000 | — |
喷射器阵列式[ | 230~600 | 35~55 | |
矿物浮选过程 | 射流式[ | — | 0~30 |
微孔曝气式[ | 0~1000 | 0~30 | |
化工过程 | 文丘里管式[ | 50~800 | 0~1 |
超声/声压式[ | — | — | |
微孔曝气式[ | 30~100 | 约15 |
主要应用领域 | 微气泡发生器类型 | 气泡尺寸/μm | 气含率/% |
---|---|---|---|
水处理过程 | 溶气-释气式[ | 0~50 | — |
微孔曝气式[ | 10~50 | 0~30 | |
电解式[ | 约100 | — | |
耦合生物反应器 | 搅拌式[ | 20~1000 | — |
喷射器阵列式[ | 230~600 | 35~55 | |
矿物浮选过程 | 射流式[ | — | 0~30 |
微孔曝气式[ | 0~1000 | 0~30 | |
化工过程 | 文丘里管式[ | 50~800 | 0~1 |
超声/声压式[ | — | — | |
微孔曝气式[ | 30~100 | 约15 |
参考文献 | 气液比 | 气泡平均尺寸 /µm | 气含率 /% | 比表面积 /m-1 | kLa/s-1 |
---|---|---|---|---|---|
Muroyama等[ | 0.01~0.07 | 32~50 | 0.6~0.8 | 1000 | 0.028 |
Muroyama等[ | 0.01~0.07 | 30~60 | 1~1.75 | 1500~2500 | 0.015 |
Ansari等[ | 0.021 | 250 | 10 | — | 0.83 |
Turney等[ | 0.026~0.26 | 230~600 | 35~55 | 5500~9200 | 0.8 |
参考文献 | 气液比 | 气泡平均尺寸 /µm | 气含率 /% | 比表面积 /m-1 | kLa/s-1 |
---|---|---|---|---|---|
Muroyama等[ | 0.01~0.07 | 32~50 | 0.6~0.8 | 1000 | 0.028 |
Muroyama等[ | 0.01~0.07 | 30~60 | 1~1.75 | 1500~2500 | 0.015 |
Ansari等[ | 0.021 | 250 | 10 | — | 0.83 |
Turney等[ | 0.026~0.26 | 230~600 | 35~55 | 5500~9200 | 0.8 |
1 | Fine bubble technology—General principles for usage and measurement of fine bubbles—Part 1: Terminology: [S]. International Organization for Standardization, 2017. |
2 | SEBBA F. Microfoams—An unexploited colloid system[J]. Journal of Colloid and Interface Science, 1971, 35(4): 643-646. |
3 | ZABEL T. The advantages of dissolved-air flotation for water treatment[J]. Journal: American Water Works Association, 1985, 77(5): 42-46. |
4 | KASTER J A, MICHELSEN D L, VELANDER W H. Increased oxygen transfer in a yeast fermentation using a microbubble dispersion[J]. Applied Biochemistry and Biotechnology, 1990, 24(1): 469-484. |
5 | 谢广元, 欧泽深, 高敏, 等. FCMC-1500型旋流微泡浮选柱在煤泥浮选中的应用研究[J]. 煤炭科学技术, 1997, 25(11): 26-28. |
XIE Guangyuan, Zeshen OU, GAO Min, et al. Application of FCMC-1500 cyclone micro-bubble flotation column in coal slime flotation[J]. Coal Science and Technology, 1997, 25(11): 26-28. | |
6 | KARAMAH E F, BISMO S, ANNASARI L, et al. Mass transfer study on micro-bubbles ozonation in a bubble column[J]. 2010, 2: 243-252. |
7 | 张志炳. 微界面传质强化技术[M]. 北京: 化学工业出版社, 2020. |
ZHANG Zhibing. Microinterfacial mass transfer intensification[M]. Beijing: Chemical Industry Press, 2020. | |
8 | ABADIE T, MA AWALI S M AL, BRENNAN B, et al. Oxygen transfer of microbubble clouds in aqueous solutions—Application to wastewater[J]. Chemical Engineering Science, 2022, 257: 117693. |
9 | RAJAPAKSE N, ZARGAR M, SEN T, et al. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review[J]. Separation and Purification Technology, 2022, 289: 120772. |
10 | AMBIKA RAJENDRAN M. Ultrasound-guided microbubble in the treatment of cancer: A mini narrative review[J]. Cureus, 2018: e3256-e3256. |
11 | CHENG Jun, XU Junchen, YE Qing, et al. Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo-bioreactor for improving microalgae growth[J]. Bioresource Technology, 2019, 277: 11-17. |
12 | YIN Junlian, LI Jingjing, LI Hua, et al. Experimental study on the bubble generation characteristics for an Venturi type bubble generator[J]. International Journal of Heat and Mass Transfer, 2015, 91: 218-224. |
13 | ALAM H S, REDHYKA G G, BAHRUDIN, et al. Design and performance of swirl flow microbubble generator[J]. Chemical Engineering & Technology, 2018, 7(40): 66-69. |
14 | MAEDA Y, TAYA C, HOSOKAWA S, et al. Influence of dissolved gas concentration on diameter and number density of micro-bubbles[C]// Proceedings of ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 2012: 2579-2585. |
15 | TURNEY D E, ANSARI M, KALAGA D V, et al. A micro-jet array for economic intensification of gas transfer in bioreactors[J]. Biotechnology Progress, 2019, 35(1): e2710. |
16 | 徐一丹, 庞明军, 费腾, 等. 电解法产生微气泡的实验研究[J]. 实验室科学, 2015, 18(6): 17-21. |
XU Yidan, PANG Mingjun, FEI Teng, et al. Experimental study on microbubbles generated by electrolytic process[J]. Laboratory Science, 2015, 18(6): 17-21. | |
17 | MAKUTA T, SUZUKI R, NAKAO T. Generation of microbubbles from hollow cylindrical ultrasonic horn[J]. Ultrasonics, 2013, 53(1): 196-202. |
18 | XIE B Q, ZHOU C J, SANG L, et al. Preparation and characterization of microbubbles with a porous ceramic membrane[J]. Chemical Engineering and Processing: Process Intensification, 2021, 159: 108213. |
19 | KUKIZAKI M, GOTO M. Spontaneous formation behavior of uniform-sized microbubbles from Shirasu porous glass (SPG) membranes in the absence of water-phase flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1/2/3): 174-181. |
20 | WANG Xinyan, SHUAI Yun, ZHANG Haomiao, et al. Bubble breakup in a swirl-Venturi microbubble generator[J]. Chemical Engineering Journal, 2021, 403: 126397. |
21 | 杜明辉, 王勇, 高群丽, 等. 臭氧微气泡处理有机废水的效果与机制[J]. 化工进展, 2021, 40(12): 6907-6915. |
DU Minghui, WANG Yong, GAO Qunli, et al. Mechanism and efficiency of ozone microbubble treatment of organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6907-6915. | |
22 | ZHANG Wenhui, ZHANG Jinzhao, ZHAO Bo, et al. Microbubble size distribution measurement in a DAF system[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5179-5183. |
23 | 高会萌. 基于微气泡曝气的生物膜反应器废水处理技术[J]. 科学技术创新, 2022(15): 54-57. |
GAO Huimeng. Biofilm reactor wastewater treatment technology based on microbubble aeration[J]. Scientific and Technological Innovation, 2022(15): 54-57. | |
24 | 曹伟丽, 王彦龙, 郭明, 等. 采油污水的电气浮处理技术研究[J]. 应用化工, 2014, 43(8): 1547-1548, 1552. |
CAO Weili, WANG Yanlong, GUO Ming, et al. Study of electro-floatation of oilfield wastewater[J]. Applied Chemical Industry, 2014, 43(8): 1547-1548, 1552. | |
25 | ZHANG Wei, LI Zhengjian, AGBLEVOR F A. Microbubble fermentation of recombinant Pichia pastoris for human serum albumin production[J]. Process Biochemistry, 2005, 40(6): 2073-2078. |
26 | 郝晓君. 华阳二矿选煤厂射流浮选柱分选试验研究[J]. 西部探矿工程, 2023, 35(2): 91-93. |
HAO Xiaojun. Experimental study on separation of jet flotation column in Huayang No. 2 coal mine[J]. West-China Exploration Engineering, 2023, 35(2): 91-93. | |
27 | 程雄伟, 王怀法. 新型射流浮选柱充气性能试验研究[J]. 矿产综合利用, 2019(4): 38-41. |
CHENG Xiongwei, WANG Huaifa. Experimental study on the aeration performance of a new type of jet flotation column[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 38-41. | |
28 | TAO Xihuan, LIU Yefei, JIANG Hong, et al. Microbubble generation with shear flow on large-area membrane for fine particle flotation[J]. Chemical Engineering and Processing: Process Intensification, 2019, 145: 107671. |
29 | GORDIYCHUK A, SVANERA M, BENINI S, et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator[J]. Experimental Thermal and Fluid Science, 2016, 70: 51-60. |
30 | JANAJREH I, ELSAMAD T, NOORUL HUSSAIN M. Intensification of transesterification via sonication numerical simulation and sensitivity study[J]. Applied Energy, 2017, 185: 2151-2159. |
31 | 周士磊, 郑权, 王岚, 等. 微气泡分散对间甲基苯甲酸合成过程的强化作用[J]. 现代化工, 2023, 43(7): 199-201. |
ZHOU Shilei, ZHENG Quan, WANG Lan, et al. Strengthening effect of dispersive air microbubbles on synthesis process of m-toluic acid[J]. Modern Chemical Industry, 2023, 43(7): 199-201. | |
32 | KIM Y-B, LEE H-S, FRANCIS L, et al. Innovative swirling flow-type microbubble generator for multi-stage DCMD desalination system: Focus on the two-phase flow pattern, bubble size distribution, and its effect on MD performance[J]. Journal of Membrane Science, 2019, 588: 117197. |
33 | KIM Hyun-Sik, Ji-Young LIM, PARK Soo-Young, et al. Effects on swirling chamber and breaker disk in pressurized-dissolution type micro-bubble generator[J]. KSCE Journal of Civil Engineering, 2017, 21(4): 1102-1106. |
34 | YAMASHITA H, AOYAGI H, MINAGAWA H. Enhancement of microbubble generation in a pressurized dissolution process by packing the nozzle with porous ceramics[J]. Water Science and Technology, 2012, 65(1): 69-75. |
35 | 李军令. 旋流溶气气浮技术在电脱盐含盐污水处理中的应用[J]. 炼油技术与工程, 2022, 52(3): 15-20. |
LI Junling. Application of cyclone dissolved air floatation technology in the treatment of electric desalting salt-containing waste water[J]. Petroleum Refinery Engineering, 2022, 52(3): 15-20. | |
36 | MELICH R, J-P VALOUR, URBANIAK S, et al. Preparation and characterization of perfluorocarbon microbubbles using Shirasu porous Glass (SPG) membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 233-243. |
37 | KUKIZAKI M. Microbubble formation using asymmetric Shirasu porous glass (SPG) membranes and porous ceramic membranes—A comparative study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340(1/2/3): 20-32. |
38 | KUKIZAKI M, BABA Y. Effect of surfactant type on microbubble formation behavior using Shirasu porous glass (SPG) membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326(3): 129-137. |
39 | ZIMMERMAN W B J, TESAR V. Bubble generation for aeration and other purposes: US12447629[P]. 2012-10-16. |
40 | TESAŘ V. High-frequency fluidic oscillator[J]. Sensors and Actuators A: Physical, 2015, 234: 158-167. |
41 | LIU Chun, TANAKA H, MA Jin, et al. Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system[J]. Water Research, 2012, 46(18): 6051-6058. |
42 | ZHANG Lei, LIU Junliang, LIU Chun, et al. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment[J]. Water Science and Technology, 2016, 74(1): 138-146. |
43 | CHANDRAN P, BAKSHI S, CHATTERJEE D. Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water[J]. Chemical Engineering Science, 2015, 138: 99-109. |
44 | SAKAI O, KIMURA M, SHIRAFUJI T, et al. Underwater microdischarge in arranged microbubbles produced by electrolysis in electrolyte solution using fabric-type electrode[J]. Applied Physics Letters, 2008, 93(23): 231501-231503. |
45 | COEY J M D, MÖBIUS M, GILLEN A J, et al. Generation and stability of freestanding aqueous microbubbles[J]. Electrochemistry Communications, 2017, 76: 38-41. |
46 | TANAKA Y, KIKUCHI K, SAIHARA Y, et al. Bubble visualization and electrolyte dependency of dissolving hydrogen in electrolyzed water using solid-polymer-electrolyte[J]. Electrochimica Acta, 2005, 50(25/26): 5229-5236. |
47 | YU Cunming, CAO Moyuan, DONG Zhichao, et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles[J]. Advanced Functional Materials, 2016, 26(37): 6830-6835. |
48 | LI Hengzhen, HU Liming, XIA Zhiran. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6(9): 3676-3687. |
49 | XU Xiao, GE Xiaoling, QIAN Yundong, et al. Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow[J]. Chemical Engineering Research and Design, 2018, 138: 13-20. |
50 | 宋艳梅. 膜片式微孔曝气器强化能质传递促进微藻固定CO2研究[D]. 杭州: 浙江大学, 2022. |
SONG Yanmei. Strengthening energy and mass transfer with diaphragm microporous aerators to promote CO2 fixation by microalgae[D]. Hangzhou: Zhejiang University, 2022. | |
51 | ZIMMERMAN W B, ZANDI M, HEMAKA BANDULASENA H C, et al. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina [J]. Applied Energy, 2011, 88(10): 3357-3369. |
52 | SOYSAL U, AZEVEDO P N, BUREAU F, et al. Freeze-dried microfluidic monodisperse microbubbles as a new generation of ultrasound contrast agents[J]. Ultrasound in Medicine & Biology, 2022, 48(8): 1484-1495. |
53 | H-A JENG. Synthesis of multifunctional microbubbles through precursor microfluidic droplet generation[M]. Michigan: ProQuest LLC, 2019. |
54 | KHAN A H, JIANG Xinyue, SURWASE S, et al. Effectiveness of oil-layered albumin microbubbles produced using microfluidic T-junctions in series for in vitro inhibition of tumor cells[J]. Langmuir, 2020, 36(39): 11429-11441. |
55 | SALARI A, GNYAWALI V, GRIFFITHS I M, et al. Shrinking microbubbles with microfluidics: Mathematical modelling to control microbubble sizes[J]. Soft Matter, 2017, 13(46): 8796-8806. |
56 | LIN Hangyu, CHEN Junfang, CHEN Chuanpin. A novel technology: Microfluidic devices for microbubble ultrasound contrast agent generation[J]. Medical & Biological Engineering & Computing, 2016, 54(9): 1317-1330. |
57 | WEBER J, AGBLEVOR F A. Microbubble fermentation of Trichoderma reesei for cellulase production[J]. Process Biochemistry, 2005, 40(2): 669-676. |
58 | REHMAN F, MEDLEY G J D, BANDULASENA H, et al. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants[J]. Environmental Research, 2015, 137: 32-39. |
59 | HANOTU J, KONG D X, ZIMMERMAN W B. Intensification of yeast production with microbubbles[J]. Food and Bioproducts Processing, 2016, 100: 424-431. |
60 | MUTHARASU L C, KALAGA D V, SATHE M, et al. Experimental study and CFD simulation of the multiphase flow conditions encountered in a novel down-flow bubble column[J]. Chemical Engineering Journal, 2018, 350: 507-522. |
61 | HERNANDEZ-ALVARADO F, KALAGA D V, TURNEY D, et al. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion[J]. Chemical Engineering Science, 2017, 168: 403-413. |
62 | FU Taotao, MA Youguang. Bubble formation and breakup dynamics in microfluidic devices: A review[J]. Chemical Engineering Science, 2015, 135: 343-372. |
63 | VAN HOEVE W, DOLLET B, GORDILLO J M, et al. Bubble size prediction in co-flowing streams[J]. EPL (Europhysics Letters), 2011, 94(6): 64001. |
64 | WANG Shiying, DHANALIWALA A H, HOSSACK J A. Modeling microbubble production rates from expanding nozzle flow-focusing microfluidic devices[C]// 2012 IEEE International Ultrasonics Symposium. IEEE, 2013: 667-670. |
65 | JIANG Chunxiang, LI Xiang, YAN Fei, et al. Microfluidic-assisted formation of multifunctional monodisperse microbubbles for diagnostics and therapeutics[J]. Micro & Nano Letters, 2011, 6(6): 417. |
66 | KOTHANDARAMAN A, HARKER A, VENTIKOS Y, et al. Novel preparation of monodisperse microbubbles by integrating oscillating electric fields with microfluidics[J]. Micromachines, 2018, 9(10): 497. |
67 | KOTHANDARAMAN A, ALFADHL Y, QURESHI M, et al. Effect of the mixing region geometry and collector distance on microbubble formation in a microfluidic device coupled with AC-DC electric fields[J]. Langmuir, 2019, 35(31): 10052-10060. |
68 | ZHAN Wei, LIU Ziwei, JIANG Shaokun, et al. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices[J]. Journal of Industrial and Engineering Chemistry, 2022, 106: 469-481. |
69 | LI Xiaoheng, SU Wenbing, LIU Yu, et al. Comparison of bubble velocity, size, and holdup distribution between single-and double-air inlet in jet microbubble generator[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(2): e2611. |
70 | TIAN H, PI S, FENG Y, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
71 | 惠恒雷, 仇性启, 张建伟, 等. 射流气泡发生器喉嘴距优化试验研究[J]. 节能, 2011, 30(4): 28-32, 2. |
HUI Henglei, QIU Xingqi, ZHANG Jianwei, et al. Experimental research into optimization on the distance between pipe and nozzle of the jet bubble generator[J]. Energy Conservation, 2011, 30(4): 28-32, 2. | |
72 | SU Wenbing, YAN Xiaokang, WANG Lijun, et al. Effect of height of flotation column on flow field[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(3): e2311. |
73 | 艾光华, 刘炯天, 曹亦俊, 等. 旋流-静态微泡浮选柱强化回收微细粒黑钨矿[J]. 中南大学学报(自然科学版), 2015, 46(11): 3983-3990. |
AI Guanghua, LIU Jiongtian, CAO Yijun, et al. Strengthened recovery of fine wolframite by cyclonic-static microbubble flotation column[J]. Journal of Central South University (Science and Technology), 2015, 46(11): 3983-3990. | |
74 | 秦华江, 张海军, 何川, 等. 旋流-静态微泡浮选柱回收钼精选尾矿中钼金属[J]. 中国钼业, 2016, 40(4): 6-9. |
QIN Huajiang, ZHANG Haijun, HE Chuan, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4): 6-9. | |
75 | 鲁志强, 杨丽, 张晨, 等. 微气泡技术在鼓泡塔中的实验研究[J]. 石油化工, 2018, 47(7): 676-680. |
LU Zhiqiang, YANG Li, ZHANG Chen, et al. Experimental study of microbubble technology in bubble column[J]. Petrochemical Technology, 2018, 47(7): 676-680. | |
76 | 田洪舟, 杨高东, 杨国强, 等. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935. |
TIAN Hongzhou, YANG Gaodong, YANG Guoqiang, et al. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor[J]. CIESC Journal, 2020, 71(11): 4927-4935. | |
77 | 吴梦思, 田洪舟, 丁方园, 等. 微界面强化柴油加氢脱硫过程的模拟计算研究[J]. 南京大学学报(自然科学), 2022, 58(4): 706-712. |
WU Mengsi, TIAN Hongzhou, DING Fangyuan, et al. Simulation study on micro-interface intensified diesel hydrodesulfurization process[J]. Journal of Nanjing University (Natural Science), 2022, 58(4): 706-712. | |
78 | 张志炳, 田洪舟, 曹宇, 等. PX生产PTA的内置微界面机组强化反应系统及工艺: CN111389314A[P]. 2020-03-31. |
ZHANG Zhibing, TIAN Hongzhou, CAO Yu, et al. Enhanced reaction system and process with built-in micro-interface unit for PTA production from PX: CN111389314A[P]. 2020-03-31. | |
79 | 张志炳, 周政, 张锋, 等. 一种苯选择性加氢反应系统及方法: CN111569815B[P]. 2020-05-14. |
ZHANG Zhibing, ZHOU Zheng, ZHANG Feng, et al. Abenzene selective hydrogenation reaction system and method: CN111569815B[P]. 2020-05-14. | |
80 | 张志炳, 周政, 张锋, 等. 一种柴油加氢的反应系统及方法: CN111871339A[P]. 2020-07-16. |
ZHANG Zhibing, ZHOU Zheng, ZHANG Feng, et al. A reaction system and method for hydrogenation of diesel fuel: CN111871339A[P]. 2020-07-16. | |
81 | 张晓国, 谢清峰, 李思, 等. 喷气燃料FITS加氢技术的工业应用[J]. 炼油技术与工程, 2017, 47(9): 21-24. |
ZHANG Xiaoguo, XIE Qingfeng, LI Si, et al. Commercial application of FITS hydrotreating technology for jet fuel[J]. Petroleum Refinery Engineering, 2017, 47(9): 21-24. | |
82 | 谢清峰, 夏登刚, 姚峰, 等. 重整生成油全馏分FITS加氢脱烯烃技术的应用[J]. 炼油技术与工程, 2016, 46(1): 7-12. |
XIE Qingfeng, XIA Denggang, YAO Feng, et al. Application of FITS hydrogenation process for olefin removal of full fraction of reformate[J]. Petroleum Refinery Engineering, 2016, 46(1): 7-12. | |
83 | LI Jingjing, SONG Yuchen, YIN Junlian, et al. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. |
84 | FENG Yirong, MU Hongfeng, LIU Xi, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
85 | 曹俊雅, 马梦杰, 李平平, 等. 进气方向对文丘里微气泡发生器气泡直径的影响[J]. 黄金科学技术, 2017, 25(5): 127-134. |
CAO Junya, MA Mengjie, LI Pingping, et al. Effect of bubble intake direction on bubble diameters generated by a Venturi microbubble generator[J]. Gold Science and Technology, 2017, 25(5): 127-134. | |
86 | 丁国栋, 陈家庆, 李振林, 等. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562. |
DING Guodong, CHEN Jiaqing, LI Zhenlin, et al. Analysis of the effect of air injection hole position on bubble formation characteristics of Venturi-type microbubble generator[J]. CIESC Journal, 2021, 72(11): 5552-5562. | |
87 | 颜攀, 黄正梁, 王靖岱, 等. 文丘里气泡发生器的气泡尺寸及分布[J]. 浙江大学学报(工学版), 2017, 51(10): 2070-2076. |
YAN Pan, HUANG Zhengliang, WANG Jingdai, et al. Bubble size and its distribution for Venturi bubble generator[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 2070-2076. | |
88 | SADATOMI M, KAWAHARA A, KANO K, et al. Performance of a new micro-bubble generator with a spherical body in a flowing water tube[J]. Experimental Thermal and Fluid Science, 2005, 29(5): 615-623. |
89 | JUWANA W E, WIDYATAMA A, DINARYANTO O, et al. Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator[J]. Chemical Engineering Research and Design, 2019, 141: 436-448. |
90 | 陈强, 蔡连波, 李小婷, 等. 用于强化鼓泡床加氢反应器气液传质的装置: CN105038845B[P]. 2017-08-29. |
CHEN Qiang, CAI Lianbo, LI Xiaoting, et al. Device for enhanced gas-liquid mass transfer in a bubbling bed hydrogenation reactor: CN105038845B[P]. 2017-08-29. | |
91 | 王喜彬, 方向晨, 孙万付, 等. 一种悬浮床加氢技术的强化传质方法: CN102051207A[P]. 2011-05-11. |
WANG Xibin, FANG Xiangchen, SUN Wanfu, et al. An enhanced mass transfer method for suspended bed hydrogenation technology: CN102051207A[P]. 2011-05-11. | |
92 | 李方. 一种原料油悬浮床加氢装置: CN203451487U[P]. 2014-02-26. |
LI Fang. A kind of feedstock oil suspended bed hydrogenation device: CN203451487U[P]. 2014-02-26. | |
93 | MAKUTA T, TAKEMURA F, HIHARA E, et al. Generation of micro gas bubbles of uniform diameter in an ultrasonic field[J]. Journal of Fluid Mechanics, 2006, 548: 113. |
94 | MUROYAMA K, IMAI K, OKA Y, et al. Mass transfer properties in a bubble column associated with micro-bubble dispersions[J]. Chemical Engineering Science, 2013, 100: 464-473. |
95 | MUROYAMA K, OKA Y, FUJIKI R. Transport properties of micro-bubbles in a bubble column[J]. Journal of Chemical Engineering of Japan, 2012, 45(9): 666-671. |
96 | ANSARI M, TURNEY D E, YAKOBOV R, et al. Chemical hydrodynamics of a downward microbubble flow for intensification of gas-fed bioreactors[J]. AIChE Journal, 2018, 64(4): 1399-1411. |
97 | SWART B, ZHAO Yubin, KHAKU M, et al. In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography[J]. Chemical Engineering Science, 2020, 225: 115836. |
98 | CARUGO D, BROWNING R J, IRANMANESH I, et al. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device[J]. The Journal of the Acoustical Society of America, 2021, 150(2): 1577-1589. |
99 | WANG Xinyan, SHUAI Yun, ZHOU Xiaorui, et al. Performance comparison of swirl-Venturi bubble generator and conventional Venturi bubble generator[J]. Chemical Engineering and Processing: Process Intensification, 2020, 154: 108022. |
100 | 丁国栋, 陈家庆, 王春升, 等. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941. |
DING Guodong, CHEN Jiaqing, WANG Chunsheng, et al. Structural design and numerical simulation of axial-swirling type micro-bubble generator[J]. The Chinese Journal of Process Engineering, 2018, 18(5): 934-941. |
[1] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[2] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[3] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[4] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[5] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[6] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[7] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[8] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[9] | SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255. |
[10] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[11] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[12] | WANG Xiaoda, CHEN Yu, WANG Qinglian, HUANG Zhixian, YANG Chen, WANG Hongxing, QIU Ting. Review on etherification by reactive distillation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811. |
[13] | DU Minghui, WANG Yong, GAO Qunli, ZHANG Yaozong, SUN Xiaoming. Mechanism and efficiency of ozone microbubble treatment of organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6907-6915. |
[14] | QIAN Jiayi, XIAO Jianjun, SUN Lin, YANG Haiping, WANG Xianhua, CHEN Yingquan, CHEN Hanping. Research progress on process intensification in hydrolysis of biomass into 5-hydroxymethylfurfural in biphasic solvent systems [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6054-6060. |
[15] | MA Lihui, HE Limin, MI Xiangran, CHEN Shujiong, LI Xiaowei. Research progress of gas-liquid two-phase flow splitting character at impacting T-junction [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5919-5928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |