Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 391-399.DOI: 10.16085/j.issn.1000-6613.2023-0304
• Fine chemicals • Previous Articles Next Articles
ZHAO Wei1(), ZHAO Deyin2, LI Shihan1, LIU Hongda1, SUN Jin1, GUO Yanqiu1
Received:
2023-03-01
Revised:
2023-05-18
Online:
2023-11-30
Published:
2023-10-25
Contact:
ZHAO Wei
赵巍1(), 赵德银2, 李世瀚1, 刘洪达1, 孙进1, 郭艳秋1
通讯作者:
赵巍
作者简介:
赵巍(1983—),男,工学博士,高级工程师,研究方向为高分子材料及添加剂的合成。E-mail:zhaow.fshy@sinopec.com。
基金资助:
CLC Number:
ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399.
赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0304
工艺参数 | 1号集输 管线 | 2号集输 管线 | 3号集输管线 | 4号集输管线 | 5号集输管线 |
---|---|---|---|---|---|
管长/km | 125.3 | 22.6 | 15 | 8.8 | 9.1 |
管径/mm | 457×6.4 | 273×6.4 | 200×6.4 | 168.3×5.6 | 168.3×5.6 |
材质 | 20# | 20# | 20# | 20# | 20# |
输量/104m³·d-1 | 50 | 60 | 65 | 1.5 | 1.0 |
输送压力/MPa | 3.6~4.0 | 3.6~4.0 | 1.3 | 0.72 | 0.76 |
初始压降/MPa | 1.41 | 1.43 | 0.61 | 0.196 | 0.198 |
加注方式 | 雾化式 | 雾化式 | 雾化式 | 雾化式 | 雾化式 |
每次加剂总量/L | 401.9 | 484.0 | 520.3 | 9.0 | 32 |
加剂流量/L·h-1 | 4.17 | 5.05 | 5.42 | 0.09 | 0.33 |
每次加剂天数/d | 5~6 | 4~5 | 4~5 | 4~5 | 4~5 |
工艺参数 | 1号集输 管线 | 2号集输 管线 | 3号集输管线 | 4号集输管线 | 5号集输管线 |
---|---|---|---|---|---|
管长/km | 125.3 | 22.6 | 15 | 8.8 | 9.1 |
管径/mm | 457×6.4 | 273×6.4 | 200×6.4 | 168.3×5.6 | 168.3×5.6 |
材质 | 20# | 20# | 20# | 20# | 20# |
输量/104m³·d-1 | 50 | 60 | 65 | 1.5 | 1.0 |
输送压力/MPa | 3.6~4.0 | 3.6~4.0 | 1.3 | 0.72 | 0.76 |
初始压降/MPa | 1.41 | 1.43 | 0.61 | 0.196 | 0.198 |
加注方式 | 雾化式 | 雾化式 | 雾化式 | 雾化式 | 雾化式 |
每次加剂总量/L | 401.9 | 484.0 | 520.3 | 9.0 | 32 |
加剂流量/L·h-1 | 4.17 | 5.05 | 5.42 | 0.09 | 0.33 |
每次加剂天数/d | 5~6 | 4~5 | 4~5 | 4~5 | 4~5 |
项目 | C | H | N | O |
---|---|---|---|---|
计算值/% | 59.79 | 9.05 | 26.18 | 4.98 |
测试值/% | 59.13 | 8.72 | 26.85 | 4.63 |
项目 | C | H | N | O |
---|---|---|---|---|
计算值/% | 59.79 | 9.05 | 26.18 | 4.98 |
测试值/% | 59.13 | 8.72 | 26.85 | 4.63 |
项目 | 检测依据 | 结果 |
---|---|---|
甲烷摩尔分数/% | GB/T13610—2020 | 91.16 |
乙烷摩尔分数/% | 1.6 | |
丙烷摩尔分数/% | 0.65 | |
异丁烷摩尔分数/% | 0.16 | |
正丁烷摩尔分数/% | 0.28 | |
新戊烷摩尔分数/% | 0.00 | |
异戊烷摩尔分数/% | 0.08 | |
正戊烷摩尔分数/% | 0.09 | |
己烷及己烷以上摩尔分数/% | 0.00 | |
氧气摩尔分数/% | 0.24 | |
氮气摩尔分数/% | 5.62 | |
二氧化碳摩尔分数/% | 0.12 | |
氦气摩尔分数/% | 0.00 | |
氢气摩尔分数/% | 0.00 | |
高位发热量(在101.325KPa,20oC下)/MJ·m-3 | GB/T11062—2020 | 36.25 |
低位发热量(在101.325KPa,20oC下)/MJ·m-3 | 32.69 | |
相对密度/g·cm-3 | 0.6032 | |
沃泊指数/ MJ·Sm-3 | 46.67 |
项目 | 检测依据 | 结果 |
---|---|---|
甲烷摩尔分数/% | GB/T13610—2020 | 91.16 |
乙烷摩尔分数/% | 1.6 | |
丙烷摩尔分数/% | 0.65 | |
异丁烷摩尔分数/% | 0.16 | |
正丁烷摩尔分数/% | 0.28 | |
新戊烷摩尔分数/% | 0.00 | |
异戊烷摩尔分数/% | 0.08 | |
正戊烷摩尔分数/% | 0.09 | |
己烷及己烷以上摩尔分数/% | 0.00 | |
氧气摩尔分数/% | 0.24 | |
氮气摩尔分数/% | 5.62 | |
二氧化碳摩尔分数/% | 0.12 | |
氦气摩尔分数/% | 0.00 | |
氢气摩尔分数/% | 0.00 | |
高位发热量(在101.325KPa,20oC下)/MJ·m-3 | GB/T11062—2020 | 36.25 |
低位发热量(在101.325KPa,20oC下)/MJ·m-3 | 32.69 | |
相对密度/g·cm-3 | 0.6032 | |
沃泊指数/ MJ·Sm-3 | 46.67 |
1 | 中国石油管道公司. 油气管道化学添加剂技术[M]. 北京: 石油工业出版社, 2010: 12-20. |
China National Petroleum Pipeline Corp. Chemical additive technology for oil and gas pipelines[M]. BeiJing: Petroleum Industry Press, 2010:12-20. | |
2 | 王琴, 李昂, 谢萍, 等. 天然气减阻剂开发应用现状及研究展望[J]. 油气田地面工程, 2018, 37(10): 6-9. |
WANG Qin, LI Ang, XIE Ping, et al. Development and application status and research prospects of natural gas drag reduction agents[J]. Oil-Gas Field Surface Engineering, 2018, 37(10): 6-9. | |
3 | 陈伟锋,尚娟,邢百汇, 等. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
CHEN Weifeng, SHANG Juan, XING Baihui, et al. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. | |
4 | 邰军, 姜希彤, 秦伟, 等. 长输天然气管道压气站运行分析[J]. 油气田地面工程, 2020, 39(8): 38-42. |
TAI Jun, JIANG Xitong, QIN Wei, et al. Operation analysis of compressor station for long distance natural gas pipeline[J]. Oil-Gas Field Surface Engineering, 2020, 39(8): 38-42. | |
5 | 张双蕾, 明亮, 李巧, 等. 天然气长输管道压气站最大操作压力研究[J]. 天然气与石油, 2021, 39(2): 1-5. |
ZHANG Shuanglei, MING Liang, LI Qiao, et al. Research on MOP for compressor station of long-distance pipeline[J]. Natural Gas and Oil, 2021, 39(2): 1-5. | |
6 | 王振声, 董红军, 张世斌, 等. 天然气管道压气站一键启停站控制技术[J]. 油气储运, 2019, 38(9): 1029-1034. |
WANG Zhensheng, DONG Hongjun, ZHANG Shibin, et al. Control technologies for the one-key start and stop of compressor stations of gas pipelines[J]. Oil & Gas Storage and Transportation, 2019, 38(9): 1029-1034. | |
7 | 郑安升, 黄留群, 杨学强, 等. 节能环保型无溶剂环氧减阻内涂层技术——以中俄东线天然气管道工程黑河—长岭段为例[J]. 天然气工业, 2020, 40(10): 120-125. |
ZHENG Ansheng, HUANG Liuqun, YANG Xueqiang, et al. Energy-saving and environmental-friendly solvent-free epoxy drag-reduction coating technology: A case study of the Heihe-Changling section of the China-Russian eastern gas pipeline[J]. Natural gas industry, 2020, 40(10): 120-124. | |
8 | 周池楼, 何默涵, 肖舒, 等. 不锈钢表面阻氢涂层研究进展[J]. 化工进展, 2020, 39(9): 3458-3468. |
ZHOU Chilou, HE Mohan, XIAO Shu, et al. Review on hydrogen permeation barrier coatings on stainless steels[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3458-3468. | |
9 | LV Xuesen, QIN Yao, LIANG Hang, et al. A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties[J]. Applied Surface Science, 2021, 562: 150192. |
10 | ZHAO Jing, SUN Ruoyu, LIU Chuang, et al. Application of ZnO/epoxy resin superhydrophobic coating for buoyancy enhancement and drag reduction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129714. |
11 | QIN Liguo, LU Shan, LIU Jianbo, et al. Bionic non-smooth epoxy resin coating with corrosion inhibitor for drag-reduction and durability[J]. Progress in Organic Coatings, 2022, 73: 107716. |
12 | SAADATBAKHSH Mohammad, JAMALI ASL Shahin, KIANI Mohammad Javad, et al. Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application[J]. Surface and Coatings Technology, 2020, 404: 126428. |
13 | 刘畅, 陈旭, 杨江. CO2腐蚀及其缓蚀剂应用研究进展[J]. 化工进展, 2021, 40(11): 6305-6314. |
LIU Chang, CHEN Xu, YANG Jiang. Corrosion inhibitors and its application in CO2 corrosion[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6305-6314. | |
14 | ESFANDIARI Nadia, ZAREINEZHAD Reza, HABIBI Zahra. The investigation and optimization of drag reduction in turbulent flow of Newtonian fluid passing through horizontal pipelines using functionalized magnetic nanophotocatalysts and lecithin[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 63-75. |
15 | Abdelsalam AL-SARKHI, NAKLA Meamer EL, AHMED Wael H. Friction factor correlations for gas-liquid/liquid-liquid flows with drag-reducing polymers in horizontal pipes[J]. International Journal of Multiphase Flow, 2011, 37(5): 501-506. |
16 | 袁颖, 敬加强, 尹然, 等. 阳离子型表面活性剂与聚合物复配体系协同减阻作用[J]. 化工进展, 2022, 41(5): 2593-2603. |
YUAN Ying, JING Jiaqiang, YIN Ran, et al. Synergistic drag reduction effect of cationic surfactant and polymer compound system[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2593-2603. | |
17 | 王帅, 赵金柱, 王荣元, 等. 乳化/润湿耦合作用稠油流动减阻新思路[J]. 化工进展, 2021, 40(S2): 126-139. |
WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, et al. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139. | |
18 | CHEN Yang, LI Changjun, NECHVAL Andrey M, et al. Mechanical degradation of polyalphaolefin in turbulent drag reduction flow in rheometer and pipeline[J]. Chemical Engineering Research and Design, 2023, 189: 333-346. |
19 | MOAYEDI Hossein, AGHEL Babak, VAFERI Behzad, et al. The feasibility of Levenberg-Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106634. |
20 | 赵巍, 王晓司, 王晓霖, 等. 双(N,N'-二正己基-乙烯基胺)-1,4-二乙烯基-哌嗪-二丁二酸盐的合成与减阻性能[J]. 化工进展, 2018, 37(7): 2814-2819. |
ZHAO Wei, WANG Xiaosi, WANG Xiaolin, et al. Synthesis and drag reduction of bis(N,N'-di-n-hexyl-vinylamine)-1,4-divinyl-piperazine disuccinate[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2814-2819. | |
21 | 赵巍, 王晓霖, 李遵照, 等. 一种磷酸胺盐天然气减阻剂及其制备方法和应用: CN108017666A[P]. 2021-03-05. |
ZHAO Wei, WANG Xiaolin, LI Zunzhao, et al. Phosphoric acid amine salt natural gas drag reducer, preparation method and application thereof: CN108017666A[P]. 2021-03-05. | |
22 | 王晓霖, 赵巍, 李遵照, 等. 磷酸胺盐天然气减阻剂及其制备方法和用途: CN108017667A[P]. 2021-04-06. |
WANG Xiaolin, ZHAO Wei, LI Zhunzhao, et al. Ammonium phosphate natural gas drag reducer, and preparation method and use thereof: CN108017667A[P]. 2018-05-11. | |
23 | 赵巍, 王晓霖, 李遵照, 等. 一种三嗪系天然气减阻剂及其合成方法和用途: CN108017587A[P]. 2018-05-11. |
ZHAO Wei, WANG Xiaolin, LI Zhunzhao, et al. Triazine natural gas drag reducer, and synthesis method and use thereof: CN108017587A[P]. 2018-05-11. | |
24 | 王晓司, 王晓霖, 赵巍, 等. 一种天然气减阻剂雾化喷涂效果测试系统及方法: CN110763265B[P]. 2021-08-31. |
WANG Xiaosi, WANG Xiaolin, ZHAO Wei, et al. Natural gas drag reducer atomization spraying effect test system and method: CN110763265B[P]. 2021-08-31. | |
25 | 赵巍, 王晓霖, 李遵照, 等. 一种三嗪类天然气减阻剂及其合成方法和用途: CN108003107A[P]. 2021-01-05. |
ZHAO Wei, WANG Xiaolin, LI Zhunzhao, et al. Triazine natural gas drag reducer and synthesis method and use thereof: CN108003107A[P]. 2021-01-05. | |
26 | 马丽, 葛维娟, 张金凯, 等. 均三嗪系列膨胀型阻燃剂的合成及应用[J]. 功能材料, 2015, 46(12): 12001-12008, 12013. |
MA Li, GE Weijuan, ZHANG Jinkai, et al. Synthesis and application of 1,3,5-triazine-based intumescent flame retardants[J]. Journal of Functional Materials, 2015, 46(12): 12001-12008, 12013. | |
27 | DAI Jinfeng, LI Bin. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene[J]. Journal of Applied Polymer Science, 2010, 116(4):2157-2165. |
[1] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[2] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[3] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[4] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[5] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[6] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[7] | LU Sijia, LI Xiaoliang, ZHAO Huiyan, TIAN Zhijuan, ZHENG Xing. Electrochemical effects on fouling and corrosion of carbon steel in circulating cooling water systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2142-2150. |
[8] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[9] | YANG Qingzheng, ZHANG Tailiang, LIU Congsheng, BAI Yi, CHENG Xin, ZHENG Cunchuan. Preparation and inhibition mechanism of gemini imidazoline quaternary ammonium salt inhibitor [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5436-5444. |
[10] | ZHANG Xiao, WANG Zhanyi, WU Zhiying, LIU Yuting, LIU Zilong, LIU Xinjia, ZHANG Sui’an. Coating modification technology of fracturing proppant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 386-400. |
[11] | MIAO Jiaxu, CHEN Xianjiang, ZHOU Yangyang, YUN Zhiqiang, ZHANG Yuhong, BI Haisheng. Corrosion acoustic emission signal analysis of X90 pipeline steel based on blind deconvolution algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 60-71. |
[12] | JIA Wenlong, SUN Yibin, TANG Ding, CHEN Jiawen, LEI Siluo, LI Changjun. Intelligent recognition method for pressure drop signals of gas pipeline leakage based on support vector machine [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4713-4722. |
[13] | YANG Fengling, LIANG Guolin, ZHANG Cuixun, WANG Guichao. Drag reduction performance of a hydrophobic Rushton impeller [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4682-4690. |
[14] | LI Boshen, WEI Ming, HU Yaoyao, DONG Yuelin, DONG Qunfeng, YANG Lifeng. Preparation and performance of modified h-BN/polyurethane acrylic coatings [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3194-3202. |
[15] | WANG Xinyu, HUANG Yaji, XU Ligang, LI Zhiyuan, LI Si, LIU Xiaodong. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |