Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4108-4122.DOI: 10.16085/j.issn.1000-6613.2023-0749
Previous Articles Next Articles
LYU Chengyuan1(), ZHANG Han1, YANG Mingwang1, DU Jianjun1, FAN Jiangli1,2()
Received:
2023-05-08
Revised:
2023-06-26
Online:
2023-09-19
Published:
2023-08-15
Contact:
FAN Jiangli
吕程远1(), 张函1, 杨明旺1, 杜健军1, 樊江莉1,2()
通讯作者:
樊江莉
作者简介:
吕程远(1997—),男,博士研究生,研究方向为生物成像用化学发光与余辉发光探针。E-mail:lvcy@mail.dlut.edu.cn。
基金资助:
CLC Number:
LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122.
吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0749
1 | PAN Ting, LU Dengyun, XIN Hongbao, et al. Biophotonic probes for bio-detection and imaging[J]. Light: Science & Applications, 2021, 10: 124. |
2 | SIGNORE A, MATHER S J, PIAGGIO G, et al. Molecular imaging of inflammation/infection: Nuclear medicine and optical imaging agents and methods[J]. Chemical Reviews, 2010, 110(5): 3112-3145. |
3 | JAMES Michelle L, GAMBHIR Sanjiv S. A molecular imaging primer: Modalities, imaging agents, and applications[J]. Physiological Reviews, 2012, 92(2): 897-965. |
4 | KENNETH Yin Zhang, YU Qi, WEI Huanjie, et al. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing[J]. Chemical Reviews, 2018, 118(4): 1770-1839. |
5 | JIANG Yuyan, PU Kanyi. Molecular probes for autofluorescence-free optical imaging[J]. Chemical Reviews, 2021, 121(21): 13086-13131. |
6 | MALDINEY Thomas, Aurélie BESSIÈRE, SEGUIN Johanne, et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nature Materials, 2014, 13(4): 418-426. |
7 | LI Yang, MINDAUGAS Gecevicius, QIU Jianrong. Long persistent phosphors—from fundamentals to applications[J]. Chemical Society Reviews, 2016, 45(8): 2090-2136. |
8 | DANG Qianxi, JIANG Yuyan, WANG Jinfeng, et al. Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents[J]. Advanced Materials, 2020, 32(52): 2006752. |
9 | NI Fan, LI Nengquan, ZHAN Lisi, et al. Organic thermally activated delayed fluorescence materials for time-resolved luminescence imaging and sensing[J]. Advanced Optical Materials, 2020, 8(14): 1902187. |
10 | HUBBS Ann F, SARGENT Linda M, PORTER Dale W, et al. Nanotechnology: Toxicologic pathology[J]. Toxicologic Pathology, 2013, 41(2): 395-409. |
11 | ZHANG Wansu, CHEN Shangyu, YE Shuai, et al. Enhancing NIR-Ⅱ phosphorescence through phosphorescence resonance energy transfer for tumor-hypoxia imaging[J]. ACS Materials Letters, 2023, 5(1): 116-124. |
12 | JIANG Yuyan, HUANG Jiaguo, ZHEN Xu, et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging[J]. Nature Communications, 2019, 10: 2064. |
13 | YANG Mingwang, ZENG Ziling, LAM Jacky W Y, et al. State-of-the-art self-luminescence: A win-win situation[J]. Chemical Society Reviews, 2022, 51(21): 8815-8831. |
14 | LIANG Ling, CHEN Na, JIA Yiyi, et al. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging[J]. Nano Research, 2019, 12(6): 1279-1292. |
15 | PENG Qian, MA Huili, SHUAI Zhigang. Theory of long-lived room-temperature phosphorescence in organic aggregates[J]. Accounts of Chemical Research, 2021, 54(4): 940-949. |
16 | ZHAO Weijun, HE Zikai, TANG Ben zhong. Room-temperature phosphorescence from organic aggregates[J]. Nature Reviews Materials, 2020, 5(12): 869-885. |
17 | WU Yingnan, ZHAO Yanliang, HOU Haoran, et al. Oxygen-insensitive delayed fluorescence based on singlet manifold[J]. Advanced Optical Materials, 2023, 11(5): e2202413. |
18 | WALDEMAR Adam, KAZAKOV Dmitri V, KAZAKOV Valeri P. Singlet-oxygen chemiluminescence in peroxide reactions[J]. Chemical Reviews, 2005, 105(9): 3371-3387. |
19 | MORGANE Vacher, IGNACIO Fdez Galván, DING Bowen, et al. Chemi- and bioluminescence of cyclic peroxides[J]. Chemical Reviews, 2018, 118(15): 6927-6974. |
20 | MATSUMOTO Masakatsu. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5(1): 27-53. |
21 | LOU Jinhui, TANG Xiaofang, ZHANG Haoke, et al. Chemiluminescence resonance energy transfer efficiency and donor-acceptor distance: From qualitative to quantitative[J]. Angewandte Chemie International Edition, 2021, 60(23): 13029-13034. |
22 | YANG Yanling, WANG Shangfeng, LU Lingfei, et al. NIR-Ⅱ chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging[J]. Angewandte Chemie International Edition, 2020, 59(42): 18380-18385. |
23 | LU Lingfei, LI Benhao, DING Suwan, et al. NIR-Ⅱ bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing[J]. Nature Communications, 2020, 11: 4192. |
24 | LIU Yongchao, TENG Lili, Yifan LYU, et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging[J]. Nature Communications, 2022, 13: 2216. |
25 | PAN Qingze, XIA Zhuoran, ZHEN Lingfeng, et al. Frontier progress and challenges based on excited-state porphyrins and their derivatives[J]. Scientia Sinica Chimica, 2022, 52(9): 1547-1556. |
26 | LU Xulin, ZHANG Xianfu. Phosphorous tetrabenzocorrolazine from its metal-free phthalocyanine precursor: Its facile synthesis, high fluorescence emission, efficient singlet oxygen formation, and promising hole transporting material[J]. Dyes and Pigments, 2020, 179: 108421. |
27 | Mehmet PIŞKIN. The novel 2,6-dimethoxyphenoxy substituted phthalocyanine dyes having high singlet oxygen quantum yields[J]. Polyhedron, 2016, 104: 17-24. |
28 | HONG Yuning, LAM Jacky W Y, TANG Ben zhong. Aggregation-induced emission: Phenomenon, mechanism and applications[J]. Chemical Communications, 2009(29): 4332-4353. |
29 | YAN Dingyuan, WU Qian, WANG Dong, et al. Innovative synthetic procedures for luminogens showing aggregation-induced emission[J]. Angewandte Chemie International Edition, 2021, 60(29): 15724-15742. |
30 | FENG Guangxue, ZHANG Guoqiang, DING Dan. Design of superior phototheranostic agents guided by Jablonski diagrams[J]. Chemical Society Reviews, 2020, 49(22): 8179-8234. |
31 | CHEN Yuncong, LAM Jacky W Y, KWOK Ryan T K, et al. Aggregation-induced emission: Fundamental understanding and future developments[J]. Materials Horizons, 2019, 6(3): 428-433. |
32 | MIAO Qingqing, PU Kanyi. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics[J]. Advanced Materials, 2018, 30(49): 1801778. |
33 | LI Xiaozhen, YIN Chao, LIEW Si Si, et al. Organic semiconducting luminophores for near-infrared afterglow, chemiluminescence, and bioluminescence imaging[J]. Advanced Functional Materials, 2021, 31(46): 2106154. |
34 | PALNER Mikael, PU Kanyi, SHAO Shirley, et al. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging[J]. Angewandte Chemie International Edition, 2015, 54(39): 11477-11480. |
35 | ZHEN Xu, XIE Chen, PU Kanyi. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy[J]. Angewandte Chemie International Edition, 2018, 57(15): 3938-3942. |
36 | LU Chang, ZHANG Cheng, WANG Peng, et al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy[J]. Chem, 2020, 6(9): 2314-2334. |
37 | MIAO Qingqing, XIE Chen, ZHEN Xu, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles[J]. Nature Biotechnology, 2017, 35(11): 1102-1110. |
38 | SAMER Gnaim, Green ORI, DORON Shabat. The emergence of aqueous chemiluminescence: New promising class of phenoxy 1,2-dioxetane luminophores[J]. Chemical Communications, 2018, 54(17): 2073-2085. |
39 | UROOB Haris, KAGALWALA Husain N, YUJIN Lisa Kim, et al. Seeking illumination: The path to chemiluminescent 1,2-dioxetanes for quantitative measurements and in vivo imaging[J]. Accounts of Chemical Research, 2021, 54(13): 2844-2857. |
40 | HANANYA Nir, ELDAR BOOCK Anat, BAUER Christoph R, et al. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: Turn-on chemiluminescence probes with color modulation for sensing and imaging[J]. Journal of the American Chemical Society, 2016, 138(40): 13438-13446. |
41 | GREEN Ori, EILON Tal, HANANYA Nir, et al. Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes[J]. ACS Central Science, 2017, 3(4): 349-358. |
42 | GREEN Ori, GNAIM Samer, BLAU Rachel, et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode[J]. Journal of the American Chemical Society, 2017, 139(37): 13243-13248. |
43 | HANANYA Nir, SHABAT Doron. Recent advances and challenges in luminescent imaging: Bright outlook for chemiluminescence of dioxetanes in water[J]. ACS Central Science, 2019, 5(6): 949-959. |
44 | HAO Liangwen, YANG Weitao, XU Yan, et al. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics[J]. Biosensors and Bioelectronics, 2022, 212: 114411. |
45 | WANG Xiu, YUAN Wei, XU Ming, et al. Visualization of acute inflammation through a macrophage-camouflaged afterglow nano complex[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 259-267. |
46 | KONG Xiaoyan, SU Xianlong, FENG Wei, et al. Afterglow nanoparticles with 2, 5, 8, 11-tetra-tert-butylperylene as blue emitter for background-free lateral flow immunoassay[J]. Sensors and Actuators B: Chemical, 2023, 382: 133460. |
47 | WEN Yue, ZHANG Sidi, YUAN Wei, et al. Afterglow/fluorescence dual-emissive ratiometric oxygen probe for tumor hypoxia imaging[J]. Analytical Chemistry, 2023, 95(4): 2478-2486. |
48 | SU Xianlong, KONG Xiaoyan, SUN Kuangshi, et al. Enhanced blue afterglow through molecular fusion for bio-applications[J]. Angewandte Chemie International Edition, 2022, 61(27): e202201630. |
49 | LIU Yawei, LI Yanzhong, WEN Yue, et al. Significantly enhanced afterglow brightness via intramolecular energy transfer[J]. ACS Materials Letters, 2021, 3(6): 713-720. |
50 | CHEN Lei, SUN Kuangshi, HU Donghao, et al. Ultra-long near-infrared repeatable photochemical afterglow mediated by reversible storage of singlet oxygen for information encryption[J]. Angewandte Chemie International Edition, 2023, 62(13): e202218670. |
51 | ZHENG Xiaokun, WU Wenbo, ZHENG Yue, et al. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy[J]. Chemistry-A European Journal, 2021, 27(23): 6911-6916. |
52 | WANG Youjuan, SONG Guosheng, LIAO Shiyi, et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency[J]. Angewandte Chemie International Edition, 2021, 60(36): 19779-19789. |
53 | ZHANG Yutao, YAN Chenxu, WANG Chao, et al. A sequential dual-lock strategy for photoactivatable chemiluminescent probes enabling bright duplex optical imaging[J]. Angewandte Chemie International Edition, 2020, 59(23): 9059-9066. |
54 | DUAN Xingchen, ZHANG Guoqiang, JI Shenglu, et al. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications[J]. Angewandte Chemie International Edition, 2022, 61(24): e202116174. |
55 | CHEN Wan, ZHANG Yuan, LI Qing, et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging[J]. Journal of the American Chemical Society, 2022, 144(15): 6719-6726. |
56 | LIU Yongchao, TENG Lili, LOU Xiaofeng, et al. “four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging[J]. Journal of the American Chemical Society, 2023, 145(9): 5134-5144. |
57 | FANG Fang, LI Min, ZHANG Jinfeng, et al. Different strategies for organic nanoparticle preparation in biomedicine[J]. ACS Materials Letters, 2020, 2(5): 531-549. |
58 | LI Qiang, SEEGER Stefan. Autofluorescence detection in analytical chemistry and biochemistry[J]. Applied Spectroscopy Reviews, 2010, 45(1): 12-43. |
59 | YUAN Lin, LIN Weiying, ZHENG Kaibo, et al. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging[J]. Chemical Society Reviews, 2013, 42(2): 622-661. |
60 | MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Research, 1986, 46(12 Pt 1): 6387-6392. |
61 | ALTıNOǦLU Erhan I˙, RUSSIN Timothy J, KAISER James M, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2008, 2(10): 2075-2084. |
62 | SAMER Tohme, SIMMONS Richard L, ALLAN Tsung. Surgery for cancer: A trigger for metastases[J]. Cancer Research, 2017, 77(7): 1548-1552. |
63 | CASTANEDA Maria, DEN HOLLANDER Petra, KUBURICH Nick A, et al. Mechanisms of cancer metastasis[J]. Seminars in Cancer Biology, 2022, 87: 17-31. |
64 | XIE Chen, ZHEN Xu, MIAO Qingqing, et al. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors[J]. Advanced Materials, 2018, 30(21): 1801331. |
65 | XU Yan, YANG Weitao, YAO Defan, et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging[J]. Chemical Science, 2020, 11(2): 419-428. |
66 | NI Xiang, ZHANG Xiaoyan, DUAN Xingchen, et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery[J]. Nano Letters, 2019, 19(1): 318-330. |
67 | LI Jisen, ZHANG Guoqiang, ZHANG Yufan, et al. Building highly light-harvesting near-infrared AIEgens using triazole-based luminescent core for improved intravital afterglow imaging[J]. Advanced Functional Materials, 2023, 33(19): 2212380. |
68 | NIU Peixin, ZHU Jing, WEI Liuhe, et al. Application of fluorescent probes in reactive oxygen species disease model[J]. Critical Reviews in Analytical Chemistry, 2022. DOI:10.1080/10408347.2022.2080495 . |
69 | JIAO Xiaoyun, LI Yong, NIU Jinye, et al. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems[J]. Analytical Chemistry, 2018, 90(1): 533-555. |
70 | CHEN Chao, GAO Heqi, Hanlin OU, et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases[J]. Journal of the American Chemical Society, 2022, 144(8): 3429-3441. |
71 | ZENG Wenhui, WU Luyan, ISHIGAKI Yusuke, et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H2S for in vivo imaging of acute hepatitis[J]. Angewandte Chemie International Edition, 2022, 61(4): e202111759. |
72 | WU Luyan, ISHIGAKI Yusuke, HU Yuxuan, et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo [J]. Nature Communications, 2020, 11: 446. |
73 | PALMIERI Erika M, CHRISTOPHER McGinity, WINK David A, et al. Nitric oxide in macrophage immunometabolism: Hiding in plain sight[J]. Metabolites, 2020, 10(11): 429. |
74 | LI Jingchao, PU Kanyi. Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer[J]. Accounts of Chemical Research, 2020, 53(4): 752-762. |
75 | SUN Shaokai, WANG Hefang, YAN Xiuping. Engineering persistent luminescence nanoparticles for biological applications: From biosensing/bioimaging to theranostics[J]. Accounts of Chemical Research, 2018, 51(5): 1131-1143. |
76 | HE Shasha, XIE Chen, JIANG Yuyan, et al. An organic afterglow protheranostic nanoassembly[J]. Advanced Materials, 2019, 31(32): 1902672. |
77 | GAO Zhiyuan, JIA Shaorui, Hanlin OU, et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death[J]. Angewandte Chemie International Edtion, 2022, 61(40): e202209793. |
78 | WAN Hao, DU Haotian, WANG Feifei, et al. Molecular imaging in the second near-infrared window[J]. Advanced Functional Materials, 2019, 29(25): 1900566. |
79 | SHI Tingyu, HUANG Chenchen, LI Yang, et al. NIR-Ⅱ phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy[J]. Biomaterials, 2022, 285: 121535. |
80 | PEI Pang, CHEN Ying, SUN Caixia, et al. X-ray-activated persistent luminescence nanomaterials for NIR-Ⅱ imaging[J]. Nature Nanotechnology, 2021, 16(9): 1011-1018. |
81 | XU Cheng, HUANG Jingsheng, JIANG Yuyan, et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific the ranostics[J]. Nature Biomedical Engineering, 2023, 7(3): 298-312. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[9] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[10] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[13] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[14] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[15] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |