Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 3965-3978.DOI: 10.16085/j.issn.1000-6613.2023-0556
Previous Articles Next Articles
CHANG Yinlong1,2(), ZHOU Qimin1,2(), WANG Qingyue1,2(), WANG Wenjun1,2, LI Bogeng1, LIU Pingwei1,2()
Received:
2023-04-09
Revised:
2023-05-12
Online:
2023-09-19
Published:
2023-08-15
Contact:
WANG Qingyue, LIU Pingwei
常印龙1,2(), 周启民1,2(), 王青月1,2(), 王文俊1,2, 李伯耿1, 刘平伟1,2()
通讯作者:
王青月,刘平伟
作者简介:
常印龙(2000—),男,硕士研究生,研究方向为聚烯烃的催化裂解。E-mail:ylchang@zju.edu.cn基金资助:
CLC Number:
CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978.
常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0556
反应 | 催化位点 | 中间体 | 产物分布特点 | 产物异构化程度 | 产物饱和度 | 参考文献 |
---|---|---|---|---|---|---|
催化热解 | 酸性位点 | 碳正离子 | 烷烃、烯烃、环烃、芳烃 (C5-C15) | 高 | 低 | [ |
加氢裂化 | 酸性位点+金属位点 | 碳正离子 | 烷烃 (C3-C30) | 高 | 高 | [ |
氢解 | 金属位点 | 烷基金属 | 烷烃 (C1、C3~C30) | 低 | 高 | [ |
反应 | 催化位点 | 中间体 | 产物分布特点 | 产物异构化程度 | 产物饱和度 | 参考文献 |
---|---|---|---|---|---|---|
催化热解 | 酸性位点 | 碳正离子 | 烷烃、烯烃、环烃、芳烃 (C5-C15) | 高 | 低 | [ |
加氢裂化 | 酸性位点+金属位点 | 碳正离子 | 烷烃 (C3-C30) | 高 | 高 | [ |
氢解 | 金属位点 | 烷基金属 | 烷烃 (C1、C3~C30) | 低 | 高 | [ |
塑料 | 反应器类型 | 催化剂 | 塑料/催化剂(质量比) | 温度/℃ | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|
轻质烯烃 | 芳烃 | C5~C12(不含芳烃) | C12+ | ||||||
HDPE | 锥形喷口床 | HZSM-5 | — | 500 | 60 | 10(单环) | 15(C5~C11) | 1 | [ |
HDPE | 锥形喷口床 | HZSM-5 | 30 | 500 | 58 | — | — | — | [ |
HDPE | 间歇反应器 | HUSY | 10 | 550 | 10.6 | 18 | — | — | [ |
HDPE | 微波辅助热解 | HZSM-5 | 5 | 620 | — | 22 | 35.9 | 13 | [ |
LDPE | 微波辅助热解 | HZSM-5 | 6.7 | 450 | — | 21.4 | — | — | [ |
LDPE | 固定床 | B-HZSM-5 | 0.025 | 600 | 65.5 | 10.2 | 16.5(C5~C11) | 5.5 | [ |
PP | 固定床 | FCC | 4 | 550 | — | 23.1 | 34.6(C8~C12) | 14 | [ |
PP | 流化床 | HUSY | 0.4 | 430 | — | 1.12(BTX) | 54.7(C5~C9) | — | [ |
PP+NS① | 固定床 | HZSM-5 | 1 | 800 | — | 12.2 | — | — | [ |
PS② | 间歇反应器 | 天然沸石 | 10 | 450 | — | 34.4 | — | — | [ |
PE+PP | 流化床 | Ga-ZSM-5 | — | 550 | 15.9(C2~C3) | 44 | — | — | [ |
塑料 | 反应器类型 | 催化剂 | 塑料/催化剂(质量比) | 温度/℃ | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|
轻质烯烃 | 芳烃 | C5~C12(不含芳烃) | C12+ | ||||||
HDPE | 锥形喷口床 | HZSM-5 | — | 500 | 60 | 10(单环) | 15(C5~C11) | 1 | [ |
HDPE | 锥形喷口床 | HZSM-5 | 30 | 500 | 58 | — | — | — | [ |
HDPE | 间歇反应器 | HUSY | 10 | 550 | 10.6 | 18 | — | — | [ |
HDPE | 微波辅助热解 | HZSM-5 | 5 | 620 | — | 22 | 35.9 | 13 | [ |
LDPE | 微波辅助热解 | HZSM-5 | 6.7 | 450 | — | 21.4 | — | — | [ |
LDPE | 固定床 | B-HZSM-5 | 0.025 | 600 | 65.5 | 10.2 | 16.5(C5~C11) | 5.5 | [ |
PP | 固定床 | FCC | 4 | 550 | — | 23.1 | 34.6(C8~C12) | 14 | [ |
PP | 流化床 | HUSY | 0.4 | 430 | — | 1.12(BTX) | 54.7(C5~C9) | — | [ |
PP+NS① | 固定床 | HZSM-5 | 1 | 800 | — | 12.2 | — | — | [ |
PS② | 间歇反应器 | 天然沸石 | 10 | 450 | — | 34.4 | — | — | [ |
PE+PP | 流化床 | Ga-ZSM-5 | — | 550 | 15.9(C2~C3) | 44 | — | — | [ |
塑料 | 催化剂 | 温度/℃ | 氢气压力/MPa | 时间/h | 塑料/催化剂 (质量比) | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C1~C4 | 汽油 | 柴油 | 润滑油 | |||||||
HDPE | Pt/STO | 300 | 1.2 | 96 | 5 | — | — | — | 42 | [ |
HDPE | Ru/C | 220 | 2 | 1 | 2.4 | — | — | — | 31.6 | [ |
LDPE | Ru/CeO2 | 240 | 6 | 8 | 34 | 9.7 | 22 | 62 | — | [ |
LDPE | Pt/WO3/ZrO2+Hβ | 250 | 3 | 2 | 10 | 4 | 73 | 20 | — | [ |
LDPE | Pt/W/β | 250 | 3 | 1 | 40 | 30.3 | 63.6 | — | — | [ |
PP | Pt/W/β | 250 | 3 | 1 | 40 | 47.1 | 50.8 | — | — | [ |
LLDPE① | Pt/W/β | 250 | 3 | 1 | 40 | 31.8 | 65 | — | — | [ |
LLDPE | Ru/Nb2O5 | 300 | 3 | 2 | 10 | — | 47 | 32 | — | [ |
PE+PP(热解蜡) | Ni/Hβ+ZSM-5 | 300 | 2 | 2 | 18.8 | 30.2 | 33.5 | 23.5 | 19 | [ |
塑料 | 催化剂 | 温度/℃ | 氢气压力/MPa | 时间/h | 塑料/催化剂 (质量比) | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C1~C4 | 汽油 | 柴油 | 润滑油 | |||||||
HDPE | Pt/STO | 300 | 1.2 | 96 | 5 | — | — | — | 42 | [ |
HDPE | Ru/C | 220 | 2 | 1 | 2.4 | — | — | — | 31.6 | [ |
LDPE | Ru/CeO2 | 240 | 6 | 8 | 34 | 9.7 | 22 | 62 | — | [ |
LDPE | Pt/WO3/ZrO2+Hβ | 250 | 3 | 2 | 10 | 4 | 73 | 20 | — | [ |
LDPE | Pt/W/β | 250 | 3 | 1 | 40 | 30.3 | 63.6 | — | — | [ |
PP | Pt/W/β | 250 | 3 | 1 | 40 | 47.1 | 50.8 | — | — | [ |
LLDPE① | Pt/W/β | 250 | 3 | 1 | 40 | 31.8 | 65 | — | — | [ |
LLDPE | Ru/Nb2O5 | 300 | 3 | 2 | 10 | — | 47 | 32 | — | [ |
PE+PP(热解蜡) | Ni/Hβ+ZSM-5 | 300 | 2 | 2 | 18.8 | 30.2 | 33.5 | 23.5 | 19 | [ |
1 | RAFEY Abdul, Kunwar PAL, BOHRE Ashish, et al. A state-of-the-art review on the technological advancements for the sustainable management of plastic waste in consort with the generation of energy and value-added chemicals[J]. Catalysts, 2023, 13(2): 420. |
2 | KORLEY LaShanda T J, EPPS Thomas H, HELMS Brett A, et al. Toward polymer upcycling-adding value and tackling circularity[J]. Science, 2021, 373(6550): 66-69. |
3 | HOU Qidong, ZHEN Meinan, QIAN Hengli, et al. Upcycling and catalytic degradation of plastic wastes[J]. Cell Reports Physical Science, 2021, 2(8): 100514. |
4 | JIANG Jie, SHI Ke, ZHANG Xiangnan, et al. From plastic waste to wealth using chemical recycling: A review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106867. |
5 | OJHA Deepak K, VINU Ravikrishnan. Copyrolysis of lignocellulosic biomass with waste plastics for resource recovery[M]//Waste Biorefinery. Amsterdam: Elsevier, 2018: 349-391. |
6 | DEMETRIOUS A, CROSSIN E. Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis[J]. Journal of Material Cycles and Waste Management, 2019, 21(4): 850-860. |
7 | WANG Zhiwei, BURRA Kiran G, LEI Tingzhou, et al. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals—A review[J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
8 | YANG Zhan, Fan LÜ, ZHANG Hua, et al. Is incineration the terminator of plastics and microplastics?[J]. Journal of Hazardous Materials, 2021, 401: 123429. |
9 | CHEN Huan, WAN Kun, ZHANG Yayun, et al. Waste to wealth: Chemical recycling and chemical upcycling of waste plastics for a great future[J]. ChemSusChem, 2021, 14(19): 4123-4136. |
10 | QURESHI Muhammad Saad, OASMAA Anja, PIHKOLA Hanna, et al. Pyrolysis of plastic waste: Opportunities and challenges[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104804. |
11 | BUTLER E, DEVLIN G, MCDONNELL K. Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research[J]. Waste and Biomass Valorization, 2011, 2(3): 227-255. |
12 | ZHANG Yutao, FU Zegang, WANG Wei, et al. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91-103. |
13 | LOPEZ Gartzen, ARTETXE Maite, AMUTIO Maider, et al. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 346-368. |
14 | KOTS Pavel A, VANCE Brandon C, VLACHOS Dionisios G. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: A comparative study[J]. Reaction Chemistry & Engineering, 2022, 7(1): 41-54. |
15 | MIANDAD R, BARAKAT M A, ABURIAZAIZA Asad S, et al. Catalytic pyrolysis of plastic waste: A review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838. |
16 | NAKAJI Yosuke, TAMURA Masazumi, MIYAOKA Shuhei, et al. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes[J]. Applied Catalysis B: Environmental, 2021, 285: 119805. |
17 | WEITKAMP Jens. Catalytic hydrocracking—Mechanisms and versatility of the process[J]. ChemCatChem, 2012, 4(3): 292-306. |
18 | CHU Mingyu, TU Weilin, YANG Shuangqiao, et al. Sustainable chemical upcycling of waste polyolefins by heterogeneous catalysis[J]. SusMat, 2022, 2(2): 161-185. |
19 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
20 | LEE Wei-Tse, VAN MUYDEN Antoine, BOBBINK Felix D, et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts[J]. Nature Communications, 2022, 13: 4850. |
21 | TEDSTONE Aleksander A, JUMAH Abdulrahman BIN, ASUQUO Edidiong, et al. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: A single-source precursor approach[J]. Royal Society Open Science, 2022, 9(3): 211353. |
22 | CHEN Linxiao, ZHU Yifeng, MEYER Laura C, et al. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes[J]. Reaction Chemistry & Engineering, 2022, 7(4): 844-854. |
23 | Siauw H NG, SEOUD Hesham, STANCIULESCU Maria, et al. Conversion of polyethylene to transportation fuels through pyrolysis and catalytic cracking[J]. Energy & Fuels, 1995, 9(5): 735-742. |
24 | AGUADO J, SERRANO D P, San MIGUEL G, et al. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 153-161. |
25 | CORMA A, ORCHILLÉS A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35/36: 21-30. |
26 | CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
27 | FAN Liangliang, LIU Lei, XIAO Zhiguo, et al. Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5[J]. Energy, 2021, 228: 120612. |
28 | FAN Liangliang, SU Zheyang, WU Jiabo, et al. Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: Effects of parameter conditions[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105213. |
29 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
30 | AGUADO J, SERRANO D P, SOTELO J L, et al. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5[J]. Industrial & Engineering Chemistry Research, 2001, 40(24): 5696-5704. |
31 | DAHL Ivar M, STEIN Kolboe. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336. |
32 | DONG Zhongwen, CHEN Wenjun, XU Keqing, et al. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review[J]. ACS Catalysis, 2022, 12(24): 14882-14901. |
33 | MARCILLA A, BELTRÁN M I, NAVARRO R. Evolution of products generated during the dynamic pyrolysis of LDPE and HDPE over HZSM5[J]. Energy & Fuels, 2008, 22(5): 2917-2924. |
34 | DORADO Christina, MULLEN Charles A, BOATENG Akwasi A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J]. Applied Catalysis B: Environmental, 2015, 162: 338-345. |
35 | ESCHENBACHER Andreas, VARGHESE Robin John, ABBAS-ABADI Mehrdad Seifali, et al. Maximizing light olefins and aromatics as high value base chemicals via single step catalytic conversion of plastic waste[J]. Chemical Engineering Journal, 2022, 428: 132087. |
36 | ELORDI Gorka, OLAZAR Martin, LOPEZ Gartzen, et al. Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6061-6070. |
37 | ELORDI G, OLAZAR M, LOPEZ G, et al. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 345-351. |
38 | MARCILLA A, BELTRÁN M I, NAVARRO R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 78-86. |
39 | ZHOU Nan, DAI Leilei, LV Yuancai, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production[J]. Chemical Engineering Journal, 2021, 418: 129412. |
40 | CHEN Zhaohui, MONZAVI Mohammad, LATIFI Mohammad, et al. Microwave-responsive SiC[email protected]core-shell structured catalyst for catalytic pyrolysis of plastics[J]. Environmental Pollution, 2022, 307: 119573. |
41 | ESCHENBACHER Andreas, GOODARZI Farnoosh, VARGHESE Robin John, et al. Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: Maximizing the C2-C4 olefin yield with minimal carbon footprint[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14618-14630. |
42 | SAEAUNG Koranit, PHUSUNTI Neeranuch, PHETWAROTAI Worasak, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127: 101-111. |
43 | LIN Y-H, YEN H-Y. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons[J]. Polymer Degradation and Stability, 2005, 89(1): 101-108. |
44 | QI Pengyu, CHANG Guozhang, WANG Hongchao, et al. Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 178-185. |
45 | MIANDAD R, BARAKAT M A, REHAN M, et al. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts[J]. Waste Management, 2017, 69: 66-78. |
46 | NISHINO Junya, ITOH Masaaki, FUJIYOSHI Hironobu, et al. Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5[J]. Fuel, 2008, 87(17/18): 3681-3686. |
47 | ARTETXE Maite, LOPEZ Gartzen, AMUTIO Maider, et al. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637-10645. |
48 | SANTOS Bianca P S, ALMEIDA Débora D, MARQUES Maria de Fátima V, et al. Degradation of polypropylene and polyethylene wastes over HZSM-5 and USY zeolites[J]. Catalysis Letters, 2019, 149(3): 798-812. |
49 | AGUADO J, SERRANO D P, ESCOLA J M, et al. Catalytic conversion of polyolefins into fuels over zeolite beta[J]. Polymer Degradation and Stability, 2000, 69(1): 11-16. |
50 | SIVAGAMI Krishnasamy, KUMAR Keshav V, TAMIZHDURAI Perumal, et al. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor[J]. RSC Advances, 2022, 12(13): 7612-7620. |
51 | FURDA L V, SMALCHENKO D E, LEBEDEVA O E. Catalytic conversion of polyolefins in the presence of MCM-41 type mesoporous materials[J]. Petroleum Chemistry, 2022, 62(3): 310-315. |
52 | WEI Dr Ta-Tung, LIN Prof Yeuh-Hui. Fast pyroylysis of polyolefin waste over cracking catalysts for producing hydrocarbon fuels using a fluidized-bed reactor[J]. International Journal of Chemical Reactor Engineering, 2012, 10(1): 1052-1053. |
53 | DAI Leilei, ZHOU Nan, LV Yuancai, et al. Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha[J]. Energy Conversion and Management, 2021, 245: 114578. |
54 | SOCCI Joseph, OSATIASHTIANI Amin, KYRIAKOU Georgios, et al. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts[J]. Applied Catalysis A: General, 2019, 570: 218-227. |
55 | DOS SANTOS LUIZ Denise, SARON Clodoaldo. Catalytic effect of natural clays on properties and chemical structure of recycled polyethylene[J]. Journal of Material Cycles and Waste Management, 2022, 24(6): 2545-2554. |
56 | LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud[J]. Applied Catalysis B: Environmental, 2011, 104(3/4): 211-219. |
57 | ZHANG Yayun, DUAN Dengle, LEI Hanwu, et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons[J]. Applied Energy, 2019, 251: 113337. |
58 | KUMAR Sachin, PANDA Achyut K, SINGH R K. A review on tertiary recycling of high-density polyethylene to fuel[J]. Resources, Conservation and Recycling, 2011, 55(11): 893-910. |
59 | WU Shuo, HAN Yu, ZOU Yongcun, et al. Synthesis of heteroatom substituted SBA-15 by the “pH-adjusting” method[J]. Chemistry of Materials, 2004, 16(3): 486-492. |
60 | YU Hongchang, LI Fuwei, HE Wen, et al. Synthesis of micro-mesoporous ZSM-5 zeolite with microcrystalline cellulose as co-template and catalytic cracking of polyolefin plastics[J]. RSC Advances, 2020, 10(37): 22126-22136. |
61 | KOKURYO S, MIYAKE K, UCHIDA Y, et al. Defect engineering to boost catalytic activity of Beta zeolite on low-density polyethylene cracking[J]. Materials Today Sustainability, 2022, 17: 100098. |
62 | SUN Peng, GAO Guang, ZHAO Zelun, et al. Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production[J]. Applied Catalysis B: Environmental, 2016, 189: 19-25. |
63 | PAYSEPAR Hooman, RAO Kasanneni Tirumala Venkateswara, YUAN Zhongshun, et al. Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2018, 563: 154-162. |
64 | YUAN Haoran, LI Chengyu, SHAN Rui, et al. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis[J]. Fuel Processing Technology, 2022, 238: 107531. |
65 | Pedro CASTAÑO, ELORDI Gorka, OLAZAR Martin, et al. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 91-100. |
66 | BONILLA Adriana, BAUDOUIN David, Javier PÉREZ-RAMÍREZ. Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis[J]. Journal of Catalysis, 2009, 265(2): 170-180. |
67 | Abel MINGORANCE-BAENA, Sandra SILES-QUESADA, TARACH Karolina, et al. Improved catalytic technology for waste plastic processing: Toward novel remediation and emission control measures[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 129-133. |
68 | SHI Jing, ZHAO Guoliang, TENG Jiawei, et al. Morphology control of ZSM-5 zeolites and their application in Cracking reaction of C4 olefin[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2734-2738. |
69 | DUAN Jindi, CHEN Wei, WANG Chengtao, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
70 | KANE Alexander Q, ESPER Alec M, SEARLES Keith, et al. Probing β-alkyl elimination and selectivity in polyolefin hydrogenolysis through DFT[J]. Catalysis Science & Technology, 2021, 11(18): 6155-6162. |
71 | WANG Cong, XIE Tianjun, KOTS Pavel A, et al. Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia[J]. JACS Au, 2021, 1(9): 1422-1434. |
72 | VANCE Brandon C, KOTS Pavel A, WANG Cong, et al. Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism[J]. Applied Catalysis B: Environmental, 2023, 322: 122138. |
73 | HACKLER Ryan A, KIMAYA Vyavhare, KENNEDY Robert M, et al. Synthetic lubricants derived from plastic waste and their tribological performance[J]. ChemSusChem, 2021, 14(19): 4181-4189. |
74 | CELIK Gokhan, KENNEDY Robert M, HACKLER Ryan A, et al. Upcycling single-use polyethylene into high-quality liquid products[J]. ACS Central Science, 2019, 5(11): 1795-1803. |
75 | JIA Chuhua, XIE Shaoqu, ZHANG Wanli, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst[J]. Chem Catalysis, 2021, 1(2): 437-455. |
76 | LIU Sibao, KOTS Pavel A, VANCE Brandon C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
77 | SUN Mengya, ZHU Lijun, LIU Wang, et al. Efficient upgrading of polyolefin plastics into C5-C12 gasoline alkanes over a Pt/W/Beta catalyst[J]. Sustainable Energy & Fuels, 2022, 6(2): 271-275. |
78 | DU Bowen, CHEN Xiao, LING Yu, et al. Hydrogenolysis-isomerization of waste polyolefin plastics to multibranched liquid alkanes[J]. ChemSusChem, 2023, 16(3): e202202035. |
79 | DING F, LUO C, ZHANG H, et al. Hydrocracking of polyolefin thermal cracking waxes over Ni-loaded molecular sieve catalysts[J]. Petroleum Science and Technology, 2015, 33(21/22): 1846-1852. |
80 | ZHANG Fan, ZENG Manhao, YAPPERT Ryan D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
81 | TENNAKOON Akalanka, WU Xun, PATERSON Alexander L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901. |
82 | JING Yaxuan, WANG Yanqin, FURUKAWA Shinya, et al. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J]. Angewandte Chemie International Edition, 2021, 60(10): 5527-5535. |
83 | CHOI Il-Ho, LEE Hye-Jin, RHIM Geun-Bae, et al. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105424. |
84 | ZICHITTELLA Guido, EBRAHIM Amani M, ZHU Jie, et al. Hydrogenolysis of polyethylene and polypropylene into propane over cobalt-based catalysts[J]. JACS Au, 2022, 2(10): 2259-2268. |
85 | TAMURA Masazumi, MIYAOKA Shuhei, NAKAJI Yosuke, et al. Structure-activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts[J]. Applied Catalysis B: Environmental, 2022, 318: 121870. |
86 | MIRENA Juan I, THYBAUT Joris W, MARIN Guy B, et al. Impact of the spatial distribution of active material on bifunctional hydrocracking[J]. Industrial & Engineering Chemistry Research, 2021, 60(18): 6357-6378. |
87 | ELLIS Lucas D, RORRER Nicholas A, SULLIVAN Kevin P, et al. Chemical and biological catalysis for plastics recycling and upcycling[J]. Nature Catalysis, 2021, 4(7): 539-556. |
88 | ONWUDILI Jude A, INSURA Nagi, WILLIAMS Paul T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 293-303. |
89 | ANUAR SHARUDDIN Shafferina Dayana, ABNISA Faisal, WAN DAUD Wan Mohd Ashri, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
90 | DUTTA Neelanjan, MONDAL Pradip, GUPTA Anirban. Optimization of process parameters using response surface methodology for maximum liquid yield during thermal pyrolysis of blend of virgin and waste high-density polyethylene[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 1182-1193. |
91 | PREMALATHA N, PRATHIBA R, MIRANDA Michael Angelo, et al. Pyrolysis of polypropylene waste using sulfonated carbon catalyst synthesized from sugarcane bagasse[J]. Journal of Material Cycles and Waste Management, 2021, 23(3): 1002-1014. |
92 | XUE Yuan, JOHNSTON Patrick, BAI Xianglan. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
93 | SHARRATT P N, LIN Y-h, GARFORTH A A, et al. Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5118-5124. |
94 | WONG S L, NGADI N, ABDULLAH T A T, et al. Current state and future prospects of plastic waste as source of fuel: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1167-1180. |
95 | KASAR Pamreishang, SHARMA D K, AHMARUZZAMAN M. Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process[J]. Journal of Cleaner Production, 2020, 265: 121639. |
96 | ELORDI G, OLAZAR M, AGUADO R, et al. Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 450-455. |
97 | OROZCO Santiago, ALVAREZ Jon, LOPEZ Gartzen, et al. Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions[J]. Energy Conversion and Management, 2021, 229: 113768. |
98 | OROZCO Santiago, LOPEZ Gartzen, SUAREZ Mayra Alejandra, et al. Oxidative fast pyrolysis of high-density polyethylene on a spent fluid catalytic cracking catalyst in a fountain confined conical spouted bed reactor[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(48): 15791-15801. |
99 | LAM Su Shiung, CHASE Howard A. A review on waste to energy processes using microwave pyrolysis[J]. Energies, 2012, 5(10): 4209-4232. |
100 | KASSARGY Chantal, AWAD Sary, BURNENS Gaetan, et al. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 31-37. |
101 | 王宇馨, 兰天昊, 王小青, 等. 低碳烯烃高效分离新型多孔材料的研究进展[J]. 化学通报, 2021, 84(10): 995-1007. |
WANG Yuxin, LAN Tianhao, WANG Xiaoqing, et al. Research progress in new porous materials for efficient light hydrocarbons separation[J]. Chemistry, 2021, 84(10): 995-1007. | |
102 | XIAO Fengshou. Decorated zeolites for chemoselective alkyne/olefin separations[J]. Science China Chemistry, 2020, 63(9): 1177-1178. |
103 | 尹新旺, 张继军, 冯世超, 等. 离子液体在低碳烯烃/烷烃分离中的应用研究进展[J]. 化工进展, 2019, 38(9): 3936-3946. |
YIN Xinwang, ZHANG Jjijun, FENG Shichao, et al. Application of ionic liquids in olefin/paraffin separation[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3936-3946. | |
104 | FAIZ Rami, LI Kang. Polymeric membranes for light olefin/paraffin separation[J]. Desalination, 2012, 287: 82-97. |
105 | WU Yaqi, WECKHUYSEN Bert M. Separation and purification of hydrocarbons with porous materials[J]. Angewandte Chemie International Edition, 2021, 60(35): 18930-18949. |
106 | RUTHVEN Douglas M. Past progress and future challenges in adsorption research[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2127-2131. |
107 | GEHRE Mascha, GUO Zhiyong, ROTHENBERG Gadi, et al. Sustainable separations of C4-hydrocarbons by using microporous materials[J]. ChemSusChem, 2017, 10(20): 3947-3963. |
108 | MUKHERJEE Soumya, SENSHARMA Debobroto, QAZVINI Omid T, et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents[J]. Coordination Chemistry Reviews, 2021, 437: 213852. |
109 | ZHANG Shuhao, TAYLOR Mercedes K, JIANG Lingchang, et al. Frontispiece: Light hydrocarbon separations using porous organic framework materials[J]. Chemistry-A European Journal, 2020, 26(15): 3205-3221. |
110 | 倪清, 来锦波, 彭东岳, 等. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
NI Qing, LAI Jinbo, PENG Dongyue, et al. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-27. | |
111 | CHAKRABORTY M, DOBARIA D, PARIKH P A. The separation of aromatic hydrocarbons through a supported ionic liquid membrane[J]. Petroleum Science and Technology, 2012, 30(23): 2504-2516. |
112 | Wytze MEINDERSMA G, PODT Anita J G, KLAREN Marianne B, et al. Separation of aromatic and aliphatic hydrocarbons with ionic liquids[J]. Chemical Engineering Communications, 2006, 193(11): 1384-1396. |
113 | MOURA Leila, SANTINI Catherine C, COSTA GOMES Margarida F. Gaseous hydrocarbon separations using functionalized ionic liquids[J]. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 2016, 71(2): 23. |
114 | IYER Gaurav M, LIU Lu, ZHANG Chen. Hydrocarbon separations by glassy polymer membranes[J]. Journal of Polymer Science, 2020, 58(18): 2482-2517. |
115 | SEMENOVA S I. Polymer membranes for hydrocarbon separation and removal[J]. Journal of Membrane Science, 2004, 231(1/2): 189-207. |
[1] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[2] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[3] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[4] | LIU Meijia, WANG Gang, ZHANG Zhongdong, HE Shengbao, GAO Jinsen. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. |
[5] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[6] | YANG Chao, JIAO Qingze, FENG Caihong, ZHAO Yun. Research progress on catalytic cracking of waste tires [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3877-3889. |
[7] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[8] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[9] | SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255. |
[10] | SONG Fei, WANG Junyan, HE Lin, SUI Hong, LI Xingang. Surfactant enhancement of bubbling for separation of residual solvent from oil sands residue after solvent extraction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2007-2014. |
[11] | FANG Dong, HE Yi, CUI Xiaochen. FCC heavy cycle oil selective hydrogenation-catalytic cracking to produce more high value products [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6358-6363. |
[12] | LYU Penggang, LIU Tao, YE Hang, HUANG Xiaoliang, DUAN Hongchang, TAN Zhengguo. Advances in improving the performance of additives for increasing propylene production in FCC process [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 210-220. |
[13] | LU Deqing, XIN Jing, ZHU Yuanbao, SU Mengjun. Analysis on integrated utilization of FCC slurry oil [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 142-149. |
[14] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[15] | LIU Dongyang, BAI Yu’en, ZHANG Linzhou, ZHANG Yuhao, ZHAO Liang, GAO Jinsen, XU Chunming. Application advances of molecular level reaction kinetic modeling for catalytic cracking/pyrolysis process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2082-2091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |