1 |
HU Jiawei, LI Zhuo, ZHANG Ai, et al. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review[J]. Environmental Research, 2020, 188: 109764.
|
2 |
CHU Libing, YAN Sangtian, XING Xinhui, et al. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production[J]. Water Research, 2009, 43(7): 1811-1822.
|
3 |
薛冰, 陈思思, 刘宾寒, 等. 臭氧处理对剩余污泥减量化、资源化与无害化的影响研究进展[J]. 给水排水, 2021, 57(4): 57-65.
|
|
XUE Bing, CHEN Sisi, LIU Binhan, et al. Research progress on the impact of ozone treatment on excess sludge reduction, recycling and harmlessness[J]. Water & Wastewater Engineering, 2021, 57(4): 57-65.
|
4 |
SUN Xiangjuan, LIU Binhan, ZHANG Lingjun, et al. Partial ozonation of returned sludge via high-concentration ozone to reduce excess sludge production: A pilot study[J]. Science of the Total Environment, 2022, 807: 150773.
|
5 |
汪启光. 污泥臭氧破解及其减量的机理与效能研究[D]. 杭州: 浙江大学, 2006.
|
|
WANG Qiguang. Study on mechanism and performance of ozonation disintegration for excess sludge reduction[D]. Hangzhou: Zhejiang University, 2006.
|
6 |
薛冰, 刘宾寒, 韦婷婷, 等. 基于臭氧旁路处理的污泥原位减量技术工艺[J]. 环境科学, 2021, 42(5): 2402-2412.
|
|
XUE Bing, LIU Binhan, WEI Tingting, et al. In-situ sludge reduction technology based on ozonation[J]. Environmental Science, 2021, 42(5): 2402-2412.
|
7 |
孙相娟, 刘宾寒, 张领军, 等. 臭氧在中试规模污泥原位减量中的应用[J]. 中国环境科学, 2022, 42(3): 1128-1137.
|
|
SUN Xiangjuan, LIU Binhan, ZHANG Lingjun, et al. Studies on the application of ozone in the pilot-scale in-situ sludge reduction system [J]. China Environmental Science, 2022, 42(3): 1128-1137.
|
8 |
HASHIMOTO K, KUBOTA N, OKUDA T, et al. Reduction of ozone dosage by using ozone in ultrafine bubbles to reduce sludge volume[J]. Chemosphere, 2021, 274: 129922.
|
9 |
ZHANG Ruiyang, MAO Yuyu, MENG Liang. Excess sludge cell lysis by ultrasound combined with ozone[J]. Separation and Purification Technology, 2021, 276: 119359.
|
10 |
杨文玲, 王坦. 臭氧催化剂催化机理及其应用研究进展[J]. 应用化工, 2020, 49(11): 2936-2940.
|
|
YANG Wenling, WANG Tan. Research progress in catalytic mechanism and application of ozone catalyst[J]. Applied Chemical Industry, 2020, 49(11): 2936-2940.
|
11 |
CHEN Hai, WANG Jianlong. Catalytic ozonation for degradation of sulfamethazine using NiCo2O4 as catalyst[J]. Chemosphere, 2021, 268: 128840.
|
12 |
李新洋, 李燕楠, 祁丹阳, 等. 电-多相臭氧催化工艺深度处理焦化废水[J]. 中国环境科学, 2020, 40(10): 4354-4361.
|
|
LI Xinyang, LI Yannan, QI Danyang, et al. Study on electrochemical heterogeneous catalytic ozonation process for treatment of coking wastewater[J]. China Environmental Science, 2020, 40(10): 4354-4361.
|
13 |
ZHOU Qing, WANG Qiangwei, TONG Shaoping. Mn2+/H2O2/O3, a high efficient advanced oxidation process in acidic solution[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 924-930.
|
14 |
FANG Jian, ZHAO Renzun, RAO Balaji, et al. Removal of polycyclic aromatic hydrocarbons from water using Mn(III)-based advanced oxidation process[J]. Journal of Environmental Engineering, 2021, 147(3): 04021002.
|
15 |
WU Chung Hsin, Chaoyin KUO, CHANG Chung Liang. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 748-755.
|
16 |
韦婷婷, 王先恺, 詹咏, 等. Mn2+催化臭氧氧化活性污泥强化溶胞[J]. 化工进展, 2022, 41(2): 1009-1016.
|
|
WEI Tingting, WANG Xiankai, ZHAN Yong, et al. Enhancement of cell lysis in activated sludge by catalytic ozonation of Mn2+ [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1009-1016.
|
17 |
李晓晨. 城市污水处理过程中重金属形态分布及潜在迁移性研究[D]. 南京: 河海大学, 2006.
|
|
LI Xiaochen. Distribution of chemical fractions and potential mobility of heavy metals during bio-treatment process of municipal wastewater[D]. Nanjing: Hohai University, 2006.
|
18 |
吴亚西, 陆美自. 臭氧分析方法的研究[J]. 中国自然医学杂志, 2002(4): 227-229.
|
|
WU Yaxi, LU Meizi. Study on the methods for the determination of ozone[J]. Chinese Journal of Natural Medicine, 2002(4): 227-229.
|
19 |
高廷耀, 顾国维, 周琪. 水污染控制工程[M]. 4版. 北京: 高等教育出版社, 2015.
|
|
GAO Tingyao, GU Guowei, ZHOU Qi. Water pollution control project[M]. 4th ed. Beijing: Higher Education Press, 2015.
|
20 |
LIU Jiadong, JU Xin, GAO Bo, et al. Effect of electrocoagulation on MBR under different power supply conditions[J]. Biochemical Engineering Journal, 2019, 152: 107371.
|
21 |
FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761.
|
22 |
温馨, 孔秀琴, 张凯. 铝、镁氯化物对剩余污泥产量的影响[J]. 中国给水排水, 2020, 36(5): 68-72.
|
|
WEN Xin, KONG Xiuqin, ZHANG Kai. Effect of aluminium chloride and magnesium chloride on excess sludge yield[J]. China Water & Wastewater, 2020, 36(5): 68-72.
|
23 |
ZHANG Jian, ZHANG Jun, TIAN Yu, et al. Changes of physicochemical properties of sewage sludge during ozonation treatment: Correlation to sludge dewaterability[J]. Chemical Engineering Journal, 2016, 301: 238-248.
|
24 |
杨志水, 姜斌. 城镇生活污水中氨氮的去除研究[J]. 环境工程, 2010, 28(S1): 147-149, 156.
|
|
YANG Zhishui, JIANG Bin. Research on removal of arnmonia-nitrogen in municipal domestic sewage[J]. Environmental Engineering, 2010, 28(S1): 147-149, 156.
|
25 |
LI Haiyan, QU Jiuhui, ZHAO Xiang, et al. Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances[J]. Journal of Environmental Science and Health, Part B, 2004, 39(5/6): 791-803.
|
26 |
刘心怡, 汤志业, 朱晓茜, 等. SBR反应器中活性污泥胞外聚合物的提取方法比较[J]. 中国给水排水, 2021, 37(17): 25-31.
|
|
LIU Xinyi, TANG Zhiye, ZHU Xiaoxi, et al. Comparison of extracellular polymeric substance extraction methods from activated sludge in sequencing batch reactor[J]. China Water & Wastewater, 2021, 37(17): 25-31.
|
27 |
Paul D’ABZAC, BORDAS François, HULLEBUSCH Eric, et al. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: Comparison of chemical and physical extraction protocols[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1589-1599.
|
28 |
陈瑶, 徐愿坚, 陈玉成, 等. 自养、异养和混合营养污泥沉降性能差异原因探讨[J]. 化工进展, 2015, 34(5): 1466-1471, 1498.
|
|
CHEN Yao, XU Yuanjian, CHEN Yucheng, et al. Investigation of the reasons for settleability differences among autotrophic, heterotrophic and mixed nutritional sludges[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1466-1471, 1498.
|
29 |
蒋勗欣, 李军, 马挺, 等. 好氧污泥颗粒化中胞外聚合物(EPS)的动态变化[J]. 环境科学学报, 2014, 34(5): 1192-1198.
|
|
JIANG Xuxin, LI Jun, MA Ting, et al. Dynamic changes of EPS in aerobic sludge granulation[J]. Acta Scientiae Circumstantiae, 2014, 34(5): 1192-1198.
|
30 |
M-F DIGNAC, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: Implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38(8/9): 45-53.
|
31 |
WANG Weiyun, GAO Xuemei, ZHANG Jin, et al. Effect of SDS and neutral protease on the release of extracellular polymeric substances (EPS) from mechanical dewatered sludge[J]. Waste and Biomass Valorization, 2019, 10(4): 1053-1064.
|
32 |
肖静, 高艳娇. 低碳氮比条件对活性污泥粒径分布的影响[J]. 科学技术与工程, 2016, 16(22): 265-268.
|
|
XIAO Jing, GAO Yanjiao. Effects of low COD/N ratios on flocs size distribution of activated sludge[J]. Science Technology and Engineering, 2016, 16(22): 265-268.
|
33 |
WILÉN Britt Marie, LUND NIELSEN Jeppe, KEIDING Kristian, et al. Influence of microbial activity on the stability of activated sludge flocs[J]. Colloids and Surfaces B: Biointerfaces, 2000, 18(2): 145-156.
|
34 |
何志江, 赵媛, 张源凯, 等. 活性污泥表面性质对絮凝沉降性能与出水悬浮物的影响[J]. 环境科学, 2016, 37(8): 3135-3143.
|
|
HE Zhijiang, ZHAO Yuan, ZHANG Yuankai, et al. Influence of activated sludge surface properties on flocculating settling and effluent suspend solid[J]. Environmental Science, 2016, 37(8): 3135-3143.
|