Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 3167-3176.DOI: 10.16085/j.issn.1000-6613.2022-1431
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
ZHANG Yaodan(), SUN Ruoxi, CHEN Pengcheng()
Received:
2022-08-01
Revised:
2023-01-23
Online:
2023-06-29
Published:
2023-06-25
Contact:
CHEN Pengcheng
通讯作者:
陈鹏程
作者简介:
张耀丹(1995—),女,硕士研究生,研究方向为生物与医药。E-mail: zhangyaodanjy@163.com。
基金资助:
CLC Number:
ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176.
张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1431
共固定策略 | 固定材料 | 固定化结果 |
---|---|---|
随机固定 | SBA-15介孔材料[ | (GOD/SBA-15)-(HRP/SBA-15)比活力为(0.4±0.1)μmol/(min·mg) |
二氧化硅[ | 7天后吸光度为初始样品的90% | |
PPCS纳米颗粒[ | 核/壳纳米粒子(PPCS NPs)使活性提高20% | |
SnO2多孔纳米纤维[ | 检测线性响应范围为5~100μmol/L,检测极限1.8μmol/L | |
玻碳电极[ | 检测线性响应范围为0.022~7.0mmol/L | |
碳纳米管[ | 15天后酶活为初始样品酶活的64% | |
Cu3(PO4)2·3H2O杂化纳米花[ | 检测线性响应范围为0.1~10mmol/L,检测极限为25μmol/L | |
氧化石墨烯[ | 2个月后酶活为初始样品酶活的85% | |
UIO-66金属有机框架[ | 在室温下超过1个月的长期稳定性 | |
分区域固定 | Fe3O4磁性纳米粒子[ | 重复使用8次,固定体系酶活为初始样品酶活的67.21% |
de-PG2聚阳离子树枝状聚合物[ | 2周后酶活为初始样品酶活的70%~75% | |
DNA“折纸技术”[ | 酶分子之间距离为10nm时,酶活性超出游离酶的15倍 | |
定向固定 | PANI聚合物构建支架[ | 催化效率是游离酶的24倍 |
多壁碳纳米管[ | 构建的生物传感器灵敏度比构建的单酶生物传感器灵敏度高5.2倍 | |
P1-P2/DM/MP DNA结构共价结合[ | 酶活比GOD/HRP游离体系酶活高了24.7% |
共固定策略 | 固定材料 | 固定化结果 |
---|---|---|
随机固定 | SBA-15介孔材料[ | (GOD/SBA-15)-(HRP/SBA-15)比活力为(0.4±0.1)μmol/(min·mg) |
二氧化硅[ | 7天后吸光度为初始样品的90% | |
PPCS纳米颗粒[ | 核/壳纳米粒子(PPCS NPs)使活性提高20% | |
SnO2多孔纳米纤维[ | 检测线性响应范围为5~100μmol/L,检测极限1.8μmol/L | |
玻碳电极[ | 检测线性响应范围为0.022~7.0mmol/L | |
碳纳米管[ | 15天后酶活为初始样品酶活的64% | |
Cu3(PO4)2·3H2O杂化纳米花[ | 检测线性响应范围为0.1~10mmol/L,检测极限为25μmol/L | |
氧化石墨烯[ | 2个月后酶活为初始样品酶活的85% | |
UIO-66金属有机框架[ | 在室温下超过1个月的长期稳定性 | |
分区域固定 | Fe3O4磁性纳米粒子[ | 重复使用8次,固定体系酶活为初始样品酶活的67.21% |
de-PG2聚阳离子树枝状聚合物[ | 2周后酶活为初始样品酶活的70%~75% | |
DNA“折纸技术”[ | 酶分子之间距离为10nm时,酶活性超出游离酶的15倍 | |
定向固定 | PANI聚合物构建支架[ | 催化效率是游离酶的24倍 |
多壁碳纳米管[ | 构建的生物传感器灵敏度比构建的单酶生物传感器灵敏度高5.2倍 | |
P1-P2/DM/MP DNA结构共价结合[ | 酶活比GOD/HRP游离体系酶活高了24.7% |
1 | BILAL Muhammad, HUSSAIN Nazim, AMÉRICO-PINHEIRO Juliana Heloisa Pinê, et al. Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges[J]. International Journal of Biological Macromolecules, 2021, 186: 735-749. |
2 | NASEER Sidra, OUYANG Jie, CHEN Xing, et al. Immobilization of β-glucosidase by self-catalysis and compared to crosslinking with glutaraldehyde[J]. International Journal of Biological Macromolecules, 2020, 154: 1490-1495. |
3 | XIAO Qinggui, TAO Xia, CHEN Jianfeng. Silica nanotubes based on needle-like calcium carbonate: fabrication and immobilization for glucose oxidase[J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 459-463. |
4 | 刘雪凌, 林贝. 载体固定化酶的应用及前景展望[J]. 广州化工, 2020, 48(9): 22-24. |
LIU Xueling, LIN Bei. Application and prospect of carrier immobilized enzyme[J]. Guangzhou Chemical Industry, 2020, 48(9): 22-24. | |
5 | LEE Chan Hee, LEE Hye Sun, LEE Jae Won, et al. Evaluating enzyme stabilizations in calcium carbonate: Comparing in situ and crosslinking mediated immobilization[J]. International Journal of Biological Macromolecules, 2021, 175: 341-350. |
6 | Mahmut ÖZACAR, MEHDE Atheer Awad, MEHDI Wesen Adel, et al. The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application[J]. Colloids and Surfaces B: Biointerfaces, 2019, 173: 58-68. |
7 | QUIN M B, WALLIN K K, ZHANG G, et al. Spatial organization of multi-enzyme biocatalytic cascades[J].Organic & Biomolecular Chemistry, 2017, 15(20): 4260-4271. |
8 | YU Mingan, LIU Duqiang, SUN Lili, et al. Facile fabrication of 3D porous hybrid sphere by co-immobilization of multi-enzyme directly from cell lysates as an efficient and recyclable biocatalyst for asymmetric reduction with coenzyme regeneration in situ [J]. International Journal of Biological Macromolecules, 2017, 103: 424-434. |
9 | SU Li, FENG Jie, ZHOU Ximin, et al. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles[J]. Analytical Chemistry, 2012, 84(13): 5753-5758. |
10 | MAFRA Agnes, ULRICH Letícia, KORNECKI Jakub, et al. Combi-CLEAs of glucose oxidase and catalase for conversion of glucose to gluconic acid eliminating the hydrogen peroxide to maintain enzyme activity in a bubble column reactor[J]. Catalysts, 2019, 9(8): 657. |
11 | 黄磊, 程振民. 无机材料在酶固定化中的应用[J]. 化工进展, 2006, 25(11): 1245-1250. |
HUANG Lei, CHENG Zhenmin. Application of inorganic materials in enzyme immobilization[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 1245-1250. | |
12 | XU Songwei, LU Yang, LI Jian, et al. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel[J]. Industrial & Engineering Chemistry Research, 2006, 45(13): 4567-4573. |
13 | CHO Eun Jin, JUNG Sera, KIM Hyun Joo, et al. Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose[J]. Chemical Communications, 2012, 48(6): 886-888. |
14 | PITZALIS Federica, MONDUZZI Maura, SALIS Andrea. A bienzymatic biocatalyst constituted by glucose oxidase and Horseradish peroxidase immobilized on ordered mesoporous silica[J]. Microporous and Mesoporous Materials, 2017, 241: 145-154. |
15 | YANG Hao, WEI Wei, LIU Songqin. Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 125: 183-188. |
16 | AKTER Rashida, RHEE Choong Kyun, RAHMAN Md Aminur. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy[J]. Biosensors and Bioelectronics, 2015, 66: 539-546. |
17 | ZORE Omkar V, PATTAMMATTEL Ajith, GNANAGURU Shailaja, et al. Bienzyme–polymer–graphene oxide quaternary hybrid biocatalysts: Efficient substrate channeling under chemically and thermally denaturing conditions[J]. ACS Catalysis, 2015, 5(9): 4979-4988. |
18 | ZHANG Xingyue, LIU Shigang, ZHANG Wenjie, et al. Photoelectrochemical platform for glucose sensing based on g-C3N4/ZnIn2S4 composites coupled with bi-enzyme cascade catalytic in situ precipitation[J]. Sensors and Actuators B: Chemical, 2019, 297: 126818. |
19 | 张伟, 甄生航, 谢国明, 等. 电化学极化玻碳电极构建的葡萄糖生物传感器[J]. 传感器与微系统, 2011, 30(8): 110-112, 119. |
ZHANG Wei, ZHEN Shenghang, XIE Guoming, et al. Biosensor for glucose based on electrochemical polarization glassy carbon electrode[J]. Transducer and Microsystem Technologies, 2011, 30(8): 110-112, 119. | |
20 | CHRISTWARDANA Marcelinus, CHUNG Yongjin, KIM Do-Heyoung, et al. Glucose biofuel cells using the two-step reduction reaction of bienzyme structure as cathodic catalyst[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 435-444. |
21 | BONGJIN Jeong, RASHIDA Akter, HAN Oc Hee, et al. Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: Highly sensitive electrochemical immunosensor for protein detection[J]. Analytical Chemistry, 2013, 85(3): 1784-1791. |
22 | LEE Seung Woo, CHEON Seon Ah, KIM Moon Il, et al. Organic–inorganic hybrid nanoflowers: Types, characteristics, and future prospects[J]. Journal of Nanobiotechnology, 2015, 13(1): 54. |
23 | SUN Jiayu, GE Jiechao, LIU Weimin, et al. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor[J]. Nanoscale, 2014, 6(1): 255-262. |
24 | 戈钧, 卢滇楠, 朱晶莹, 等. 纳米酶催化剂制备方法研究进展[J]. 化工学报, 2014, 65(7): 2668-2675. |
GE Jun, LU Diannan, ZHU Jingying, et al. Advances in preparation of nanostructured enzyme catalysts[J]. CIESC Journal, 2014, 65(7): 2668-2675. | |
25 | ARIZA-AVIDAD M, SALINAS-CASTILLO A, CAPITÁN-VALLVEY L F. A 3D µPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor[J]. Biosensors and Bioelectronics, 2016, 77: 51-55. |
26 | 徐亚楠, 周全, 吕永康. 固定化多酶策略及易分离的载体材料研究进展[J]. 化学通报, 2022, 85(10): 1170-1176, 1218. |
XU Yanan, ZHOU Quan, Yongkang LYU. Research progress in immobilized multi-enzyme strategy and easily separated support materials[J]. Chemistry, 2022, 85(10): 1170-1176, 1218. | |
27 | LOCKHART Jacob N, HMELO Anthony B, HARTH Eva. Electron beam lithography of poly(glycidol) nanogels for immobilization of a three-enzyme cascade[J]. Polymer Chemistry, 2018, 9(5): 637-645. |
28 | BILAL El-Zahab, DUSTIN Donnelly, WANG Ping. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes[J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514. |
29 | Javier ROCHA-MARTIN, Susana VELASCO-LOZANO, GUISÁN José M, et al. Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production[J]. Green Chemistry, 2014, 16(1): 303-311. |
30 | NEUBAUEROVA Katrin, CARNEIRO Mariana C C G, RODRIGUES Lígia R, et al. Nanocellulose-based biosensor for colorimetric detection of glucose[J]. Sensing and Bio-Sensing Research, 2020, 29: 100368. |
31 | YAN Yongcun, QIAO Zhenjie, Xin HAI, et al. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture[J]. Biosensors and Bioelectronics, 2021, 174: 112827. |
32 | KILIAN Vogele, JONATHAN List, SIMMEL Friedrich C, et al. Enhanced efficiency of an enzyme cascade on DNA-activated silica surfaces[J]. Langmuir, 2018, 34(49): 14780-14786. |
33 | MATHEW M, SANDHYARANI N. Detection of glucose using immobilized bienzyme on cyclic bisureas–gold nanoparticle conjugate[J]. Analytical Biochemistry, 2014, 459: 31-38. |
34 | SINGH K, SINGH B P, CHAUHAN R, et al. Fabrication of amperometric bienzymatic glucose biosensor based on MWCNT tube and polypyrrole multilayered nanocomposite[J]. Journal of Applied Polymer Science, 2012, 125(S1): E235-E246. |
35 | SEUNG Hoon Baek, JIHYEOK Roh, CHAN Yeong Park, et al. Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 107: 110273. |
36 | LI Feng, WANG Zhen, CHEN Wei, et al. A simple strategy for one-step construction of bienzyme biosensor by in situ formation of biocomposite film through electrodeposition[J]. Biosensors and Bioelectronics, 2009, 24(10): 3030-3035. |
37 | 侯晨, 陈文强, 付琳慧, 等. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905. |
HOU Chen, CHEN Wenqiang, FU Linhui, et al. Covalent organic frameworks(COFs) materials in enzyme immobilization and mimic enzymes[J]. Progress in Chemistry, 2020, 32(7): 895-905. | |
38 | 白云岫, 曹逊, 戈钧. 高分子修饰/无机晶体固定化酶研究进展[J]. 生物加工过程, 2018, 16(1): 12-18. |
BAI Yunxiu, CAO Xun, GE Jun. Advances in enzyme-polymer conjugates and enzyme-inorganic crystal composites[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(1): 12-18. | |
39 | MEMON Amjad Hussain, DING Runsheng, YUAN Qipeng, et al. Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by co-immobilization process[J]. Biochemical Engineering Journal, 2018, 136: 102-108. |
40 | LIANG Hao, SUN Shanshan, ZHOU Yan, et al. In-situ self-assembly of zinc/adenine hybrid nanomaterials for enzyme immobilization[J]. Catalysts, 2017, 7(11): 327. |
41 | MUNIRAH Mohammad, AMIR Razmjou, LIANG Kang, et al. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 1807-1820. |
42 | LI Wenjun, CHEN Siyu, YANG Yue, et al. Ultrasensitive electrochemical immunosensor based on the signal amplification strategy of the competitive reaction of Zn2+ and ATP ions to construct a “signal on” mode GOx-HRP enzyme cascade reaction[J]. Mikrochimica Acta, 2021, 188(2): 61. |
43 | SONG Jiayi, HE Wenting, SHEN Hao, et al. Construction of multiple enzyme metal-organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation[J]. Chemical Engineering Journal, 2019, 363: 174-182. |
44 | LIANG Huihui, WANG Linyu, YANG Yuxi, et al. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework[J]. Biosensors and Bioelectronics, 2021, 193: 113553. |
45 | Bäumler HANS, RADOSTINA Georgieva. Coupled enzyme reactions in multicompartment microparticles[J]. Biomacromolecules, 2010, 11(6): 1480-1487. |
46 | ZHANG Lei, SHI Jiafu, JIANG Zhongyi, et al. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction[J]. Green Chemistry, 2011, 13(2): 300-306. |
47 | 陈思佳. 细胞外纳米多酶催化与生物合成[D]. 北京: 北京化工大学, 2018. |
CHEN Sijia. Catalysis and biosynthesis of extracellular nanometer polyenzymes[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
48 | HANNA Gustafsson, Küchler ANDREAS, KRISTER Holmberg, et al. Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles[J]. Journal of Materials Chemistry B, 2015, 3(30): 6174-6184. |
49 | ZHOU Xiao, LIU Yan, YUAN Qipeng, et al. Preparation of multi-enzyme co-immobilized nanoparticles by bis-aryl hydrazone bond conjugation[J]. Biotechnology and Applied Biochemistry, 2016, 63(2): 214-219. |
50 | GOUSIA Begum, GOODWIN Brandon W, DEGLEE Ben M, et al. Compartmentalisation of enzymes for cascade reactions through biomimetic layer-by-layer mineralization[J]. Journal of Materials Chemistry B, 2015, 3(26): 5232-5240. |
51 | FU Jinglin, LIU Minghui, LIU Yan, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures[J]. Journal of the American Chemical Society, 2012, 134(12): 5516-5519. |
52 | VEIKKO Linko, MARIKA Eerikäinen, KOSTIAINEN Mauri A. A modular DNA origami-based enzyme cascade nanoreactor[J]. Chemical Communications, 2015, 51(25): 5351-5354. |
53 | 胡玲玲. 基于辅基法的多酶体系定向共固定化研究[D]. 杭州: 浙江理工大学, 2016. |
HU Lingling. Oriented co-immobilization of multi-enzyme systems based on prosthetic group affinity[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. | |
54 | LIU Yang, DU Juanjuan, YAN Ming, et al. Biomimetic enzyme nano complexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nature Nanotechnology, 2013, 8(3): 187-192. |
55 | CHEN Huan, XI Fengna, GAO Xia, et al. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar–lectin biospecific interaction[J]. Analytical Biochemistry, 2010, 403(1/2): 36-42. |
56 | ZHANG Yifei, YONG You, GE Jun, et al. Lectin agglutinated multienzyme catalyst with enhanced substrate affinity and activity[J]. ACS Catalysis, 2016, 6(6): 3789-3795. |
57 | ORTIZ Elvis, GALLAY Pablo, GALICIA Laura, et al. Nanoarchitectures based on multi-walled carbon nanotubes non-covalently functionalized with Concanavalin A: A new building-block with supramolecular recognition properties for the development of electrochemical biosensors[J]. Sensors and Actuators B: Chemical, 2019, 292: 254-262. |
58 | YANG Ye, ZHANG Ruiqi, ZHOU Bingnan, et al. High activity and convenient ratio control: DNA-directed co-immobilization of multiple enzymes on multifunctionalized magnetic nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37254-37263. |
59 | SONG Jiayi, HE Wenting, SHEN Hao, et al. Exquisitely designed magnetic DNA nanocompartment for enzyme immobilization with adjustable catalytic activity and improved enzymatic assay performance[J]. Chemical Engineering Journal, 2020, 390: 124488. |
60 | NISARAPORN Suthiwangcharoen, LI Tao, WU Laying, et al. Facile co-assembly process to generate core-shell nanoparticles with functional protein corona[J]. Biomacromolecules, 2014, 15(3): 948-956. |
61 | ALIM Samiul, KAFI A K M, RAJAN Jose, et al. Application of polymerized multiporous nanofiber of SnO2 for designing a bienzyme glucose biosensor based on HRP/GOx [J]. International Journal of Biological Macromolecules, 2019, 123: 1028-1034. |
62 | YANG Han. A glucose biosensor based on horseradish peroxidase and glucose oxidase co-entrapped in carbon nanotubes modified electrode[J]. International Journal of Electrochemical Science, 2017, 12: 4958-4969. |
63 | ELOUARZAKI K, BOUROUROU M, HOLZINGER M, et al. Freestanding HRP-GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications[J]. Energy & Environmental Science, 2015, 8(7): 2069-2074. |
64 | ZHU Xueli, HUANG Jin, LIU Jinwen, et al. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose[J]. Nanoscale, 2017, 9(17): 5658-5663. |
65 | MOTILAL Mathesh, LIU Jingquan, BARROW Colin J, et al. Graphene-oxide-based enzyme nanoarchitectonics for substrate channeling[J]. Chemistry, 2017, 23(2): 304-311. |
66 | AHMAD Raneem, SHANAHAN Jordan, RIZALDO Sydnie, et al. Co-immobilization of an enzyme system on a metal-organic framework to produce a more effective biocatalyst[J]. Catalysts, 2020, 10(5): 499. |
67 | JOSEP Garcia, ZHANG Yue, HANNAH Taylor, et al. Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors[J]. Nanoscale, 2011, 3(9): 3721-3730. |
[1] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[2] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[3] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[4] | MENG Zihao, LI Qingyun, LIU Youyan, LIN Dongliang, TANG Aixing. MOF-immobilized lipase-catalyzed epoxidation of limonene in a single-phase system [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6540-6548. |
[5] | LIN Yuanqing, LI Xialan, ZHANG Guangya. Recent research progress of enzyme self-immobilization methods [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4523-4532. |
[6] | MA Zhi, LI Yingqian, DING Tong, DONG Junjie, QIN Yongning. Research progress of halloysite nanotubes in biomedical science application [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3032-3039. |
[7] | HOU Xiuzhang1,MA Xiaoyan1,XI Yuchen1,CHANG Hai2. Progress in enzyme electrode of biofuel cell [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 414-419. |
[8] | CHEN Ya;LIN Bo. Research on enzyme immobilization by modified ceramic particle [J]. Chemical Industry and Engineering Progree, 2007, 26(10): 1462-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |