Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 297-309.DOI: 10.16085/j.issn.1000-6613.2022-0512
• Materials science and technology • Previous Articles Next Articles
PAN Yuelei(), CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping()
Received:
2022-03-29
Revised:
2022-05-31
Online:
2023-02-20
Published:
2023-01-25
Contact:
ZHANG Heping
通讯作者:
张和平
作者简介:
潘月磊(1992—),男,特任副研究员,研究方向为气凝胶热安全材料。E-mail: panyl@ustc.edu.cn。
基金资助:
CLC Number:
PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
潘月磊, 程旭东, 闫明远, 何盼, 张和平. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0512
分类 | 工艺流程 | 特点 |
---|---|---|
颗粒气凝胶填充玻璃 | 用一定粒度和颗粒级的气凝胶颗粒填充入玻璃空腔中,最后密封形成颗粒气凝胶填充玻璃 | 制备工艺简单,成本低,性能稳定,在三类气凝胶的商业应用中处于主导地位 |
块状气凝胶玻璃 | 在两块玻璃之间放入大块气凝胶芯材,再用密封胶密封 | 块状气凝胶生产成本高且易碎,良品率低,但气凝胶连续性好,在作为太阳能集热板时集热系数较高 |
涂膜气凝胶玻璃 | 将凝胶用溶剂均质或超声分散后再镀膜;或将溶胶涂覆于玻璃上,再在玻璃上完成凝胶、干燥过程。 | 可通过改变配比和优化涂敷工艺来提高气凝胶玻璃性能;但涂层与玻璃基体之间的连接性和黏结性差 |
分类 | 工艺流程 | 特点 |
---|---|---|
颗粒气凝胶填充玻璃 | 用一定粒度和颗粒级的气凝胶颗粒填充入玻璃空腔中,最后密封形成颗粒气凝胶填充玻璃 | 制备工艺简单,成本低,性能稳定,在三类气凝胶的商业应用中处于主导地位 |
块状气凝胶玻璃 | 在两块玻璃之间放入大块气凝胶芯材,再用密封胶密封 | 块状气凝胶生产成本高且易碎,良品率低,但气凝胶连续性好,在作为太阳能集热板时集热系数较高 |
涂膜气凝胶玻璃 | 将凝胶用溶剂均质或超声分散后再镀膜;或将溶胶涂覆于玻璃上,再在玻璃上完成凝胶、干燥过程。 | 可通过改变配比和优化涂敷工艺来提高气凝胶玻璃性能;但涂层与玻璃基体之间的连接性和黏结性差 |
1 | MALEKI Hajar, Luisa DURÃES, PORTUGAL António. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74. |
2 | HE Fei, YU Wanjun, FANG Minhan, et al. An overview on silica aerogels synthesized by siloxane co-precursors[J]. Journal of Inorganic Materials, 2015, 30(12): 1243-1253. |
3 | GOLD V, LOENING K L, MCNAUGHT A D, et al. International union of pure and applied chemistry compendium of chemical terminology IUPAC recommendations[M]. Oxford: Blackwell Scientific Publications Limited, 1987: 230. |
4 | Nicola HÜSING, SCHUBERT Ulrich. Aerogels-airy materials: Chemistry, structure, and properties[J]. Angewandte Chemie International Edition, 1998, 37(1/2): 22-45. |
5 | KOCON L, DESPETIS F, PHALIPPOU B. Ultralow density silica aerogels by alcohol supercritical drying[J]. Journal of Non-Crystalline Solids, 1998, 225: 96-100. |
6 | AEGERTER M, LEVENTIS N, KOEBEL M. Aerogels handbook[M]. USA: Springer Science & Business Media, 2011. |
7 | BODAY Dylan, MURIITHI Beatrice, STOVER Robert, et al. Polyaniline nanofiber-silica composite aerogels[J]. Journal of Non-Crystalline Solids, 2012, 358(12/13): 1575-1580. |
8 | LINHARES T, PESSOA DE A M, DURÃES L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications[J]. Journal of Materials Chemistry A, 2019, 7(40): 22768-22802. |
9 | PAN Yuelei, HE Song, GONG Lunlun, et al. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying[J]. Materials & Design, 2017, 113: 246-253. |
10 | PAN Yuelei, HE Song, CHENG Xudong, et al. A fast synthesis of silica aerogel powders-based on water glass via ambient drying[J]. Journal of Sol-Gel Science and Technology, 2017, 82(2): 594-601. |
11 | DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1/2/3): 10-26. |
12 | LI W, WILLEY R J. Stability of hydroxyl and methoxy surface groups on silica aerogels[J]. Journal of Non-Crystalline Solids, 1997, 212(2/3): 243-249. |
13 | RAO A V, BHAGAT S D. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process[J]. Solid State Sciences, 2004, 6(9): 945-952. |
14 | PISAL A A, RAO A V. Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method[J]. Journal of Porous Materials, 2016, 23(6): 1547-1556. |
15 | SCARTEZZINI J L. Proceedings of CISBAT 2015 international conference on future buildings and districts-Sustainability from nano to urban scale-Vol. II[C]//Cisbat International Conference “future Buildings & Districts-sustainability from Nano to Urban Scale”. EPFL Solar Energy and Building Physics Laboratory, 2015. |
16 | SHAO Zaidong, HE Xiaoyong, NIU Ziwei, et al. Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths[J]. Materials Chemistry and Physics, 2015, 162: 346-353. |
17 | Tomasz BŁASZCZYŃSKI, Agnieszka ŚLOSARCZYK, MORAWSKI Maciej. Synthesis of silica aerogel by supercritical drying method[J]. Procedia Engineering, 2013, 57: 200-206. |
18 | TAMON Hajime, KITAMURA Taketo, OKAZAKI Morio. Preparation of silica aerogel from TEOS[J]. Journal of Colloid and Interface Science, 1998, 197(2): 353-359. |
19 | ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials, 2017, 241: 293-302. |
20 | LIN Jiming, LI Guangze, LIU Wei, et al. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications[J]. Journal of Materials Science, 2021, 56(18): 10812-10833. |
21 | FRICKE J, EMMERLING A. Aerogels-recent progress in production techniques and novel applications[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1): 299-303. |
22 | SMITH D M, DESHPANDE R, JEFFREY B C. Preparation of low-density aerogels at ambient pressure[J]. MRS Online Proceedings Library, 1992, 271(1): 567-572. |
23 | WU Guoyou, YU Yuxi, CHENG Xuan, et al. Preparation and surface modification mechanism of silica aerogels via ambient pressure drying[J]. Materials Chemistry and Physics, 2011, 129(1/2): 308-314. |
24 | BANGI U K, DHERE S L, VENKATESWARA R A. Influence of various processing parameters on water-glass-based atmospheric pressure dried aerogels for liquid marble purpose[J]. Journal of Materials Science, 2010, 45(11): 2944-2951. |
25 | 武晨浩, 李昆锋, 李肖华, 等. 二氧化硅气凝胶常压干燥工艺的研究进展[J]. 化工进展, 2022, 41(2): 837-847. |
WU Chenhao, LI Kunfeng, LI Xiaohua, et al. Research progress on preparation of silica aerogels at ambient pressure drying[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847. | |
26 | ZHOU Ting, CHENG Xudong, PAN Yuelei, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science, 2018, 437: 321-328. |
27 | SHAFI Sameera, NAVIK Rahul, DING Xiao, et al. Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel[J]. Journal of Non-Crystalline Solids, 2019, 503/504: 78-83. |
28 | STRØM R A, MASMOUDI Y, RIGACCI A, et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology, 2007, 41(3): 291-298. |
29 | HÆREID S, ANDERSON J, EINARSRUD M A, et al. Thermal and temporal aging of TMOS-based aerogel precursors in water[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 221-226. |
30 | LUCAS E M, DOESCHER M S, EBENSTEIN D M, et al. Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids[J]. Journal of Non-Crystalline Solids, 2004, 350: 244-252. |
31 | ZHAO Junjie, DUAN Yuanyuan, WANG Xiaodong, et al. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5196-5204. |
32 | LI Zhi, CHENG Xudong, HE Song, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites A: Applied Science and Manufacturing, 2016, 84: 316-325. |
33 | BODAY D J, STOVER R J, MURIITHI B, et al. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1364-1369. |
34 | ZHANG G, DASS A, RAWASHDEH A M M, et al. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization[J]. Journal of Non-Crystalline Solids, 2004, 350: 152-164. |
35 | YOUSEFI A T, MOGHADDAS J. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. International Journal of Hydrogen Energy, 2015, 40(3): 1472-1480. |
36 | TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220: 76-89. |
37 | REIM M, KÖRNER W, MANARA J, et al. Silica aerogel granulate material for thermal insulation and daylighting[J]. Solar Energy, 2005, 79(2): 131-139. |
38 | STANDEKER S, NOVAK Z, KNEZ Z. Adsorption of toxic organic compounds from water with hydrophobic silica aerogels[J]. Journal of Colloid and Interface Science, 2007, 310(2): 362-368. |
39 | TSOU Peter. Silica aerogel captures cosmic dust intact[J]. Journal of Non-Crystalline Solids, 1995, 186: 415-427. |
40 | 李俊宁, 胡子君, 孙陈诚, 等. 高超声速飞行器隔热材料技术研究进展[J]. 宇航材料工艺, 2011, 41(6): 10-13, 31. |
LI Junning, HU Zijun, SUN Chencheng, et al. Thermal insulation materials for hypersonic vehicles[J]. Aerospace Materials & Technology, 2011, 41(6): 10-13, 31. | |
41 | 韩露, 袁磊, 于景坤. Research progress on SiO2 nanoporous thermal insulating material[J]. 耐火材料, 2012, 46(2): 146-150. |
HAN Lu, YUAN Lei, YU Jingkun. Research progress on SiO2 nanoporous thermal insulating material[J]. Refractories, 2012, 46(2): 146-150. | |
42 | 沈学霖, 朱光明, 杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10): 164-169. |
SHEN Xuelin, ZHU Guangming, YANG Pengfei. Advances in heat insulation material applied for aerospace[J]. Polymer Materials Science & Engineering, 2016, 32(10): 164-169. | |
43 | MALFAIT W J, WERNERY J, ZHAO S, et al. Encyclopedia of Glass Science, Technology, History, and Culture: Silica aerogels[M]. New York: John Wiley & Sons Inc., 2021, 2: 981-989. |
44 | WANG Qin, YU Heng, ZHANG Zeyu, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70. |
45 | YEO J, LIU Z, NG T Y. Silica aerogels: A review of molecular dynamics modelling and characterization of the structural, thermal, and mechanical properties[M]. Cham: Springer International Publishing, 2020: 1575-1595. |
46 | 冯坚, 高庆福, 冯军宗, 等. SiO2气凝胶隔热复合材料性能及应用研究进展[C]. 第十六届全国复合材料学办年会(NCCM-16). 北京: 中国科学技术出版社, 2010: 76-80. |
FENG Jian, GAO Qingfu, FENG Junzong, et al. Progress on the performance and application of SiO2 aerogel insulation composites[C] The 16th National Conference on Composite Materials(NCCM-16) Beijing: Science and Technology of China Press, 2010: 76-80 | |
47 | ZHANG Xinxin, WEI Gaosheng, YU Fan. Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator[C]//Proceedings of ASME 2005 Summer Heat Transfer Conference Collocated With the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, July, 2005, San Francisco, California, USA, 2009: 7-12. |
48 | LEE Kang. Aerogels for retrofitted increases in aircraft survivability[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April, 2002, Denver, Colorado. Reston, Virginia: AIAA, 2002: 1497. |
49 | 兰伟, 刘效疆. 长寿命热电池保温材料的研究[J]. 电源技术, 2005, 29(3): 167-169. |
LAN Wei, LIU Xiaojiang. Study on thermal insulation used in long-life thermal battery[J]. Chinese Journal of Power Sources, 2005, 29(3): 167-169. | |
50 | 陆磊, 顾于珏, 吴源昊. SiO2气凝胶在建筑材料应用上的研究[J]. 砖瓦, 2020(7): 83-85. |
LU Lei, GU Yujue, WU Yuanhao. Study on the application of silica aerogel in building materials[J]. Brick-Tile, 2020(7): 83-85. | |
51 | 黄杰, 陈令施. 浅谈气凝胶绝热毡在热力管道保温工程中的应用[J]. 城市建设理论研究, 2015, 5(8): 3030-3031. |
HUANG Jie, CHEN Lingshi. Application of aerogel thermal insulation felt in thermal pipeline thermal insulation engineering[J]. Urban Construction Theory Research, 2015, 5(8): 3030-3031. | |
52 | 董相禄, 倪明, 罗旭光, 等. 二氧化硅气凝胶毡在直埋蒸汽管的应用[J]. 煤气与热力, 2017, 37(11): 10-13. |
DONG Xianglu, NI Ming, LUO Xuguang, et al. Application of silica aerogel felt to directly buried steam pipe[J]. Gas & Heat, 2017, 37(11): 10-13. | |
53 | 任富建. 二氧化硅气凝胶复合毡热力管道保温性能分析[J]. 区域供热, 2016(1): 62-64, 76. |
REN Fujian. Analysis of thermal insulation performance of silica aerogel composite felt thermal pipeline[J]. District Heating, 2016(1): 62-64, 76. | |
54 | 张由素, 刘丰, 练绵炎, 等. SiO2气凝胶毡在化工管道领域应用研究[J]. 化工新型材料, 2016, 44(1): 250-251. |
ZHANG Yousu, LIU Feng, LIAN Mianyan, et al. Application research of silica aerogel material in the chemical pipeline[J]. New Chemical Materials, 2016, 44(1): 250-251. | |
55 | 吕谦. 注汽锅炉气凝胶节能技术研究与应用[C]//第十六届五省(市、区)稠油开采技术研讨会论文集, 2012: 487-490. |
LV Qian. Research and application of aerogel energy-saving technology for steam injection boilers[C]//Proceedings of the 16th Five-Province (City, District) Heavy Oil Exploitation Technology Seminar, 2012: 487-490. | |
56 | 包波. 注汽锅炉气凝胶节能技术研究与应用[J]. 设备管理与维修, 2014(S1): 219-221. |
BAO Bo. Research and application of aerogels energy saving technology for gas injection boiler [J]. Plant Maintenance Engineering, 2014(S1): 219-221. | |
57 | 徐雨虹. 注汽锅炉气凝胶节能技术研究与应用[J]. 石油和化工节能, 2014(2): 4. |
XU Yuhong. Research and application of aerogel energy-saving technology for steam injection boilers[J]. Petroleum & Chemical Energy Conservation, 2014(2): 4. | |
58 | 郭晓煜, 张光磊, 赵霄云, 等. 气凝胶在建筑节能领域的应用形式与效果[J]. 硅酸盐通报, 2015, 34(2): 444-449, 455. |
GUO Xiaoyu, ZHANG Guanglei, ZHAO Xiaoyun, et al. Forms and effect of aerogels as insulation materials in building energy-saving[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 444-449, 455. | |
59 | 石静. 气凝胶在建筑节能领域的应用形式与效果分析[J]. 化工管理, 2018(9): 31-32. |
SHI Jing. Application form and effect analysis of aerogel in building energy saving fieldJ]. Chemical Enterprise Management, 2018(9): 31-32. | |
60 | BERARDI Umberto. The development of a monolithic aerogel glazed window for an energy retrofitting project[J]. Applied Energy, 2015, 154: 603-615. |
61 | FANTUCCI Stefano, FENOGLIO Elisa, GROSSO Giulia, et al. Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings[J]. Science and Technology for the Built Environment, 2019, 25(9): 1178-1186. |
62 | LIANG Yuying, WU Huijun, HUANG Gongsheng, et al. Thermal performance and service life of vacuum insulation panels with aerogel composite cores[J]. Energy and Buildings, 2017, 154: 606-617. |
63 | AN Lu, WANG Jieyu, PETIT Donald, et al. A scalable crosslinked fiberglass-aerogel thermal insulation composite[J]. Applied Materials Today, 2020, 21: 100843. |
64 | LI Pengwei, WU Huijun, LIU Yanchen, et al. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete[J]. Construction and Building Materials, 2019, 205: 529-542. |
65 | GÜNAY A A, KIM H, NAGARAJAN N, et al. Optically transparent thermally insulating silica aerogels for solar thermal insulation[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12603-12611. |
66 | GAO Tao, IHARA Takeshi, GRYNNING Steinar, et al. Perspective of aerogel glazings in energy efficient buildings[J]. Building and Environment, 2016, 95: 405-413. |
67 | GAO T, JELLE B P, GUSTAVSEN A. Building integration of aerogel glazings[J]. Procedia Engineering, 2016, 145: 723-728. |
68 | KIM G S, HYUN S H. Synthesis of window glazing coated with silica aerogel films via ambient drying[J]. Journal of Non-Crystalline Solids, 2003, 320(1/2/3): 125-132. |
69 | BURATTI C, MORETTI E. Glazing systems with silica aerogel for energy savings in buildings[J]. Applied Energy, 2012, 98: 396-403. |
70 | LV Yajun, WU Huijun, LIU Yanchen, et al. Quantitative research on the influence of particle size and filling thickness on aerogel glazing performance[J]. Energy and Buildings, 2018, 174: 190-198. |
71 | 王珊, 王欢, 杨建明, 等. 气凝胶节能玻璃的研究与应用进展[J]. 建筑节能, 2016, 44(8): 50-54. |
WANG Shan, WANG Huan, YANG Jianming, et al. Advances on research and application of aerogel glazing for energy efficiency[J]. Building Energy Efficiency, 2016, 44(8): 50-54. | |
72 | 何方, 吴菊英, 黃渝鸿, 等. 影响二氧化硅气凝胶隔热涂料热导率的因素[J]. 化工进展, 2014, 33(8): 2134-2139, 2169. |
HE Fang, WU Juying, HUANG Yuhong, et al. Effect of contents and sizes on the thermal conductivity of silica aerogel thermal insulation coatings[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2134-2139, 2169. | |
73 | LIU ZhaoHui, DING Yidong, XIN Shu, et al. Preparation, characterization and properties of SiO2 aerogel composite thermal insulation coating[J]. Chemical Engineering Transactions, 2016, 55: 259-264. |
74 | SCHMIDT M, SCHWERTFEGER F. Applications for silica aerogel products[J]. Journal of Non-Crystalline Solids, 1998, 225: 364-368. |
75 | LIU Zongjian, LIU Ling, ZHONG Zhenggen, et al. Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks[J]. RSC Advances, 2021, 11(13): 7331-7337. |
76 | ZHAO Xiaoming, LIU Yuanjun, LIANG Tenglong. Study on the Thermal Insulation Performance of PAN Pre-Oxidised Fibre Felts[J]. Fibres & Textiles in Eastern Europe, 2020, 28(3): 27-37. |
77 | ZHAO S, MALFAIT W J, DEMILECAMPS A, et al. Strong, thermally superinsulating biopolymer-silica aerogel hybrids by cogelation of silicic acid with pectin[J]. Angewandte Chemie, 2015, 127(48): 14490-14494. |
78 | HUANG Yajun, HE Song, CHEN Guangnan, et al. Fast preparation of glass fiber/silica aerogel blanket in ethanol & water solvent system[J]. Journal of Non-Crystalline Solids, 2019, 505: 286-291. |
79 | ŚLOSARCZYK A, WOJCIECH S, PIOTR Z, et al. Synthesis and characterization of carbon fiber/silica aerogel nanocomposites[J]. Journal of Non-Crystalline Solids, 2015, 416: 1-3. |
80 | SHAFI S, ZHAO Yaping. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials, 2020, 27(2): 495-502. |
81 | YAN Mingyuan, PAN Yuelei, CHENG Xudong, et al. “Robust-Soft” anisotropic nanofibrillated cellulose aerogels with superior mechanical, flame-Retardant, and thermal insulating properties[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27458-27470. |
82 | LI Zhi, GONG Lunlun, CHENG Xudong, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials & Design, 2016, 99: 349-355. |
83 | ADHIKARY S K, ASHISH D K, RUDŽIONIS Ž. Aerogel based thermal insulating cementitious composites: A review[J]. Energy and Buildings, 2021, 245: 111058. |
84 | CUI Jun, HOU Peng, DING Qing, et al. Study on properties and analysis on market of domestic fiberglass reinforced aerogel blanket[J]. Fiber Glass, 2019, 2: 30-35. |
85 | 彭罗文, 艾明星, 柳培玉, 等. 二氧化硅气凝胶材料在建筑领域的应用研究及发展概述[J]. 建筑节能, 2018, 46(1): 41-48. |
PENG Luowen, AI Mingxing, LIU Peiyu, et al. Overview of the application and development of silica aerogel material in the building field[J]. Building Energy Efficiency, 2018, 46(1): 41-48. | |
86 | XU Xiang, ZHANG Qiangqiang, HAO Menglong, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(6428): 723-727. |
87 | REN Bo, LIU Jinging, RONG Yedong, et al. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiO x core-shell nanofibers with multifunctionality and temperature-invariant hyperelasticity[J]. ACS Nano, 2019, 13(10): 11603-11612. |
88 | WANG Fei, HUANG Lu, LIU Zhaohui, et al. Performance optimization of SiO2 aerogel mortar[J]. Equipment Environmental Engineering, 2016, 13(2): 13-17. |
89 | NG S, JELLE B P, SANDBERG L I C, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete[J]. Construction and Building Materials, 2015, 77: 307-316. |
90 | GAO T, JELLE B P, GUSTAVSEN A, et al. Aerogel-incorporated concrete: An experimental study[J]. Construction and Building Materials, 2014, 52: 130-136. |
91 | NG S, SANDBERG L I, JELLE B P. Insulating and strength properties of an aerogel-incorporated mortar based an UHPC formulations[J]. Key Engineering Materials, 2014, 629/630: 43-48. |
92 | NG S, JELLE B P, STÆHLI T. Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar[J]. Cement and Concrete Composites, 2016, 72: 213-221. |
93 | STEFANIDOU M, IOANNA-MARIA M, MYRTA G M. Influence of aerogel as aggregate in the properties of cement mortars[J]. IOP Conference Series: Earth and Environmental Science, 2020, 410(1): 012117. |
94 | NG S, JELLE B P, ZHEN Y, et al. Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe[J]. Construction and Building Materials, 2016, 106: 640-649. |
95 | 沈军, 连娅, 祖国庆, 等. 气凝胶低成本制备及其在建筑保温领域中的应用[J]. 功能材料, 2015, 46(7): 7001-7007. |
SHEN Jun, LIAN Ya, ZU Guoqing, et al. Aerogel low-cost preparation and its application in the field of building insulation[J]. Journal of Functional Materials, 2015, 46(7): 7001-7007. | |
96 | LI Qing, ZHANG Yuanting, WEN Zhexi, et al. An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector[J]. Energy Conversion and Management, 2020, 214: 112911. |
97 | WANG Qin, YU Heng, ZHANG Zeyu, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70. |
98 | ILIS G G. Progress in exergy, energy, and the environment: experimental insulation performance evaluation of aerogel for household refrigerators[M]. Cham: Springer, 2014: 495-506. |
99 | 马荣, 童跃进, 关怀民. SiO2气凝胶的研究现状与应用[J]. 材料导报, 2011, 25(1): 58-64. |
MA Rong, TONG Yuejin, GUAN Huaimin. Current research and applications of silica aerogels[J]. Materials Review, 2011, 25(1): 58-64. | |
100 | 罗嘉联, 林思程, 钟奇君. 超级绝热材料气凝胶在冰箱中的应用探究[J]. 江西建材, 2014(9): 2, 5. |
LUO Jialian, LIN Sicheng, ZHONG Qijun. Research on the application of super insulating material aerogel in refrigerator[J]. Jiangxi Building Materials, 2014(9): 2, 5. | |
101 | WENG Jingwen, OUYANG Dongxu, YANG Xiaoqing, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[8] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[9] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[11] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[12] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[13] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[14] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[15] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |