Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6408-6418.DOI: 10.16085/j.issn.1000-6613.2022-0402
• Materials science and technology • Previous Articles Next Articles
Received:
2022-03-16
Revised:
2022-05-05
Online:
2022-12-29
Published:
2022-12-20
Contact:
ZHAO Zhenxia
通讯作者:
赵祯霞
作者简介:
张新宇(1998—),男,硕士研究生,研究方向为吸附分离。E-mail:2290652654@qq.com。
基金资助:
CLC Number:
ZHANG Xinyu, ZHAO Zhenxia. Research progress of metal-organic framework-based phase-change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6408-6418.
张新宇, 赵祯霞. 金属有机骨架基复合相变储热材料研究进展[J]. 化工进展, 2022, 41(12): 6408-6418.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0402
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-6C空心管 | 十八烷 | 80.0 | 187.0 | — | [ |
Zn-MOF | 聚乙二醇 | 85.0 | 159.8 | 0.384 | [ |
分级孔ZIF-67 | 聚乙二醇 | 84.8 | 144.1 | — | [ |
MOF-5 | 聚乙二醇纳米线 | 50.0 | 78.4 | 0.600 | [ |
MIL-101(Cr)-NH2 | 硬脂酸 | 70.0 | 110.0 | 0.375 | [ |
Cr-MIL-101-NH2@碳量子点 | 硬脂酸 | 70.0 | 132.0 | 0.410 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-6C空心管 | 十八烷 | 80.0 | 187.0 | — | [ |
Zn-MOF | 聚乙二醇 | 85.0 | 159.8 | 0.384 | [ |
分级孔ZIF-67 | 聚乙二醇 | 84.8 | 144.1 | — | [ |
MOF-5 | 聚乙二醇纳米线 | 50.0 | 78.4 | 0.600 | [ |
MIL-101(Cr)-NH2 | 硬脂酸 | 70.0 | 110.0 | 0.375 | [ |
Cr-MIL-101-NH2@碳量子点 | 硬脂酸 | 70.0 | 132.0 | 0.410 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J·g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
MOF-5多孔碳 | 聚乙二醇 | 92.5 | 162.0 | 0.420 | [ |
MOF-5分级多孔碳 | 聚乙二醇 | 92.5 | 128.2 | 0.312 | [ |
NH2-MIL-53(Al)氮掺杂多孔碳 | 聚乙二醇 | 90.0 | 168.3 | 0.370 | [ |
ZIF-67磷掺杂多孔碳 | 月桂酸 | 80.0 | 124.0 | 1.050 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J·g-1 | 热导率/W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
MOF-5多孔碳 | 聚乙二醇 | 92.5 | 162.0 | 0.420 | [ |
MOF-5分级多孔碳 | 聚乙二醇 | 92.5 | 128.2 | 0.312 | [ |
NH2-MIL-53(Al)氮掺杂多孔碳 | 聚乙二醇 | 90.0 | 168.3 | 0.370 | [ |
ZIF-67磷掺杂多孔碳 | 月桂酸 | 80.0 | 124.0 | 1.050 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率//W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-NH2@碳纳米管 | 聚乙二醇 | 70.0 | 96.2 | 0.464 | [ |
Ni-MOF@膨胀石墨 | 三水乙酸钠 | 75.0 | 166.6 | 1.599 | [ |
MOF-5衍生多孔碳@还原氧化石墨烯 | 硬脂酸 | 90.0 | 168.7 | 0.600 | [ |
ZIF-8衍生多孔碳@碳纳米管 | 硬脂酸 | 75.0 | 155.7 | 1.023 | [ |
ZIF-67衍生多孔碳@膨胀石墨 | 硬脂酸 | — | 192.5 | 2.530 | [ |
ZIF-67衍生多孔碳@氧化铜纳米棒/泡沫铜 | 硬脂酸 | 42.0 | 78.5 | 0.810 | [ |
载体 | 相变材料 | 负载率(质量分数)/% | 相变潜热/J∙g-1 | 热导率//W·m-1∙K-1 | 参考文献 |
---|---|---|---|---|---|
Cr-MIL-101-NH2@碳纳米管 | 聚乙二醇 | 70.0 | 96.2 | 0.464 | [ |
Ni-MOF@膨胀石墨 | 三水乙酸钠 | 75.0 | 166.6 | 1.599 | [ |
MOF-5衍生多孔碳@还原氧化石墨烯 | 硬脂酸 | 90.0 | 168.7 | 0.600 | [ |
ZIF-8衍生多孔碳@碳纳米管 | 硬脂酸 | 75.0 | 155.7 | 1.023 | [ |
ZIF-67衍生多孔碳@膨胀石墨 | 硬脂酸 | — | 192.5 | 2.530 | [ |
ZIF-67衍生多孔碳@氧化铜纳米棒/泡沫铜 | 硬脂酸 | 42.0 | 78.5 | 0.810 | [ |
1 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
2 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. |
LI Shuankui, LIN Yuan, PAN Feng. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. | |
3 | 于永生, 井强山, 孙雅倩. 低温相变储能材料研究进展[J]. 化工进展, 2010, 29(5): 896-900, 913. |
YU Yongsheng, JING Qiangshan, SUN Yaqian. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 896-900, 913. | |
4 | 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44, 72. |
CHEN Aiying, WANG Xueying, CAO Xuezeng. Research and application of phase change material (PCM) used as energy storing material[J]. Materials Review, 2003, 17(5): 42-44, 72. | |
5 | LI Min, SHI Junbing. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction and Building Materials, 2019, 194: 287-310. |
6 | WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965. |
7 | LEI Jie, YANG Changchuan, HUANG Xuhui, et al. Solidification enhancement of phase change materials using nanoparticles and metal foams with nonuniform porosity[J]. Journal of Energy Storage, 2021, 44: 103420. |
8 | YUAN Mengdi, REN Yunxiu, XU Chao, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222. |
9 | TIAN Heqing, WANG Weilong, DING Jing, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194. |
10 | SUN Keyan, KOU Yan, ZHANG Yanwei, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453. |
11 | LIU Yurong, XIA Yongpeng, AN Kang, et al. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior[J]. Journal of Materials Science & Technology, 2019, 35(5): 939-945. |
12 | LIU Lu, HU Jin, FAN Xiaoqiao, et al. Phase change materials with Fe3O4/GO three-dimensional network structure for acoustic-thermal energy conversion and management[J]. Chemical Engineering Journal, 2021, 426: 130789. |
13 | CAO Ruirui, LI Xuan, CHEN Sai, et al. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites[J]. Energy, 2017, 138: 157-166. |
14 | 陈文艺, 陆启玉, 钟南京. 金属有机骨架固定脂肪酶的研究进展[J]. 河南工业大学学报(自然科学版), 2021, 42(2): 121-128, 135. |
CHEN Wenyi, LU Qiyu, ZHONG Nanjing. Recent advances in lipase immobilization by metal-organic frameworks[J]. Journal of Henan University of Technology (Natural Science Edition), 2021, 42(2): 121-128, 135. | |
15 | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
16 | HAN Li, ZHANG Xiaomin, WU Deyong. Construction and characterization of BiOI/NH2-MIL-125(Ti) heterostructures with excellent visible-light photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3773-3781. |
17 | FU Yangjie, ZHANG Kejie, ZHANG Yi, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engineering Journal, 2021, 412: 128722. |
18 | KWON Dong il, KIM Jeong Chul, LEE Haesol, et al. Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions[J]. Chemical Engineering Journal, 2022, 427: 131461. |
19 | MOHD AZMI Luqman Hakim, CHERUKUPALLY Pavani, Elwin HUNTER-SELLARS, et al. Fabrication of MIL-101-polydimethylsiloxane composites for environmental toluene abatement from humid air[J]. Chemical Engineering Journal, 2022, 429: 132304. |
20 | XIE Linhua, LIU Xiaomin, HE Tao, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
21 | JI Chenghan, REN Yi, YU Hang, et al. Highly efficient and selective Hg(Ⅱ) removal from water by thiol-functionalized MOF-808: kinetic and mechanism study[J]. Chemical Engineering Journal, 2022, 430: 132960. |
22 | MA Xiaoyan, WANG Lei, WANG Hong, et al. Insights into metal-organic frameworks HKUST-1 adsorption performance for natural organic matter removal from aqueous solution[J]. Journal of Hazardous Materials, 2022, 424(Pt C): 126918. |
23 | ZENG Yifang, CAMARADA María Belén, LU Xinyu, et al. Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode[J]. Food Chemistry, 2022, 370: 131024. |
24 | MA Junping, BAI Wushuang, ZHENG Jianbin. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions[J]. Biosensors and Bioelectronics, 2022, 197: 113801. |
25 | WANG Deqing, ZHENG Pu, CHEN Pengcheng, et al. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin[J]. Bioresource Technology, 2021, 323: 124611. |
26 | ZHAO Zhenghong, HUANG Yaojing, LIU Wenren, et al. Immobilized glucose oxidase on boronic acid-functionalized hierarchically porous MOF as an integrated nanozyme for one-step glucose detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4481-4488. |
27 | KONG Xiangjing, LI Jianrong. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8): 1115-1139. |
28 | ZAHIR Md Hasan, HELAL Aasif, HAKEEM Abbas S. Hybrid polyMOF materials prepared by combining an organic polymer with a MOF and their application for solar thermal energy storage[J]. Energy & Fuels, 2021, 35(12): 10199-10209. |
29 | CHEN Xi, KONG Xiangyun, WANG Shuaiyin, et al. Facile preparation of metal/metal-organic frameworks decorated phase change composite materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 40: 102711. |
30 | 陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903. |
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/(tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. | |
31 | CHEN Xiao, GAO Hongyi, TANG Zhaodi, et al. Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell Reports Physical Science, 2020, 1(10): 100218. |
32 | 原野, 王明, 周云琪, 等. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
YUAN Ye, WANG Ming, ZHOU Yunqi, et al. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450. | |
33 | LUAN Yi, YANG Ming, MA Qianqian, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
34 | KANG Hyungmook, DAMES Chris, URBAN Jeffrey J. Melting point depression and phase identification of sugar alcohols encapsulated in ZIF nanopores[J]. The Journal of Physical Chemistry C, 2021, 125(18): 10001-10010. |
35 | TANG Jia, CHEN Xingyu, ZHANG Liguo, et al. Alkylated meso-macroporous metal-organic framework hollow tubes as nanocontainers of octadecane for energy storage and thermal regulation[J]. Small, 2018, 14(35): e1801970. |
36 | ATINAFU Dimberu G, CHANG Seong Jin, KIM Ki Hyun, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: 124430. |
37 | FU Yilin, ZHEN Liping, ZHOU Bo, et al. New strategy of synthesizing zeolitic imidazolate framework-67 with hierarchical pores for heat storage[J]. Materials Letters, 2021, 293: 129722. |
38 | 海广通, 薛祥东, 苏天琪, 等. 金属有机骨架与相变芯材相互作用的分子动力学[J]. 工程科学学报, 2020, 42(1): 99-105. |
Guangtong HAI, XUE Xiangdong, SU Tianqi, et al. Molecular dynamics study on the interaction between metal-organic frameworks and phase change core materials[J]. Chinese Journal of Engineering, 2020, 42(1): 99-105. | |
39 | LI Pei, FENG Daili, FENG Yanhui, et al. Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: a molecular dynamics simulation[J]. Case Studies in Thermal Engineering, 2021, 26: 101027. |
40 | FENG Daili, FENG Yanhui, ZANG Yuyang, et al. Phase change in modified metal organic frameworks MIL-101(Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132. |
41 | CHEN Xiao, GAO Hongyi, YANG Mu, et al. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials[J]. Energy Storage Materials, 2019, 18: 349-355. |
42 | 周奇, 吴宇恩. 热解法制备MOF衍生多孔碳材料研究进展[J]. 科学通报, 2018, 63(22): 2246-2267. |
ZHOU Qi, WU Yuen. Research progress on prepartion of MOF-derived porous carbon materials through pyrolysis[J]. Chinese Science Bulletin, 2018, 63(22): 2246-2267. | |
43 | TANG Jia, YANG Ming, DONG Wenjun, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114. |
44 | FENG Dai-Li, ZANG Yu-Yang, LI Pei, et al. Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability[J]. Composites Science and Technology, 2021, 210: 108832. |
45 | ATINAFU Dimberu G, DONG Wenjun, HOU Changmin, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy, 2019, 12: 239-249. |
46 | WANG Miao, LIU Mingming, LI Pan, et al. Lauric acid encapsulated in P-doped carbon matrix with reinforced heat storage performance for efficient battery cooling[J]. Journal of Energy Storage, 2021, 44: 103461. |
47 | ISLAMOV Meiirbek, BABAEI Hasan, WILMER Christopher E. Influence of missing linker defects on the thermal conductivity of metal-organic framework HKUST-1[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56172-56177. |
48 | KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502. |
49 | WANG Jingjing, HUANG Xiubing, GAO Hongyi, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal, 2018, 350: 164-172. |
50 | XU Tao, CHEN Qinglin, HUANG Gongsheng, et al. Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146. |
51 | HU Tao, CHANG Shuya, WU Hongzheng, et al. Construction of high thermal conductivity MOFs composite phase change materials with reinforced light-to-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111339. |
52 | LI Ang, DONG Cheng, DONG Wenjun, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32093-32101. |
53 | LI Ang, WANG Jingjing, DONG Cheng, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity[J]. Applied Energy, 2018, 217: 369-376. |
54 | LI Dan, CHENG Xiaomin, LI Yuanyuan, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142-149. |
55 | WANG Miao, LI Pan, YU Faquan. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage[J]. Renewable Energy, 2021, 172: 599-605. |
56 | ATINAFU Dimberu G, YUN Beom Yeol, YANG Sungwoong, et al. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability[J]. Journal of Hazardous Materials, 2022, 423: 127147. |
57 | DONG Cheng, LI Ang, WANG Chen, et al. Engineering attractive interaction in ZIF-based phase change materials for boosting electro-and photo-driven thermal energy storage[J]. Chemical Engineering Journal, 2022, 430: 133007. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[4] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[5] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[6] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[7] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[8] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[9] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[10] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[11] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[12] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[13] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[14] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |