1 |
BAHRAMI H, ESLAMI A, NABIZADEH R, et al. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: optimization using response surface methodology[J]. Journal of Cleaner Production, 2018, 198: 1210-1218.
|
2 |
雷丽丹, 周正伟, 高雅, 等. 电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程, 2021, 28(3): 108-116.
|
|
LEI Lidan, ZHOU Zhengwei, GAO Ya, et al. TCE treatment in electro-Fenton system with electrochemical oxidation modified graphite felt electrode[J]. Safety and Environmental Engineering, 2021, 28(3): 108-116.
|
3 |
BLANCH-RAGA N, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation[J]. Applied Catalysis B: Environmental, 2016, 187(15): 90-97.
|
4 |
王曼凝, 颜廷春, 耿炎, 等. 磁场-真菌生物滴滤器去除三氯乙烯废气的研究[J]. 西南大学学报(自然科学版), 2021, 43(5): 172-181.
|
|
WANG Manning, YAN Tingchun, GENG Yan, et al. Removal of trichloroethylene by a magnetic field-fungal biotrickling filter[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(5): 172-181.
|
5 |
陈立, 刘霄龙, 施文博, 等. 氯代挥发性有机物CVOCs催化氧化的研究进展[J]. 环境工程, 2017, 35(10): 114-119.
|
|
CHEN Li, LIU Xiaolong, SHI Wenbo, et al. Research progress of catalytic oxidation of CVOCs[J]. Environmental Engineering, 2017, 35(10): 114-119.
|
6 |
DIVAKAR Duraiswami, Manuel ROMERO-SÁEZ, Beñat PEREDA-AYO, et al. Catalytic oxidation of trichloroethylene over Fe-zeolites[J]. Catalysis Today, 2011, 176(1): 357-360.
|
7 |
梁川, 朱磊, 于鹏, 等. 负载型复合氧化物催化剂催化燃烧氯苯性能研究[J]. 功能材料, 2021, 52(5): 5012-5017.
|
|
LIANG Chuan, ZHU Lei, YU Peng, et al. Performance study on the catalytic combustion of chlorobenzene by supported composite oxide catalysts[J]. Journal of Functional Materials, 2021, 52(5): 5012-5017.
|
8 |
SUN W, GONG B, PAN J, et al. Catalytic combustion of CVOCs over Cr x Ti1- x oxide catalysts[J]. Journal of Catalysis, 2020, 391: 132-144.
|
9 |
方志勇, 王英普, 张帅, 等. 含氯挥发性有机物催化燃烧研究进展[J]. 工业催化, 2021, 29(5): 10-18.
|
|
FANG Zhiyong, WANG Yingpu, ZHANG Shuai, et al. Research advancements on catalytic combustion of chlorinated volatile organic compounds[J]. Industrial Catalysis, 2021, 29(5): 10-18.
|
10 |
孙静, 董一霖, 李法齐, 等. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315.
|
|
SUN Jing, DONG Yilin, LI Faqi, et al. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315.
|
11 |
冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773.
|
|
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773.
|
12 |
宇富航, 李永红, 鲁倩文, 等. 以CoMn2O4为催化剂氧化二甲苯的研究[J]. 化学工业与工程, 2021, 38(4): 25-36.
|
|
YU Fuhang, LI Yonghong, LU Qianwen, et al. Study on the oxidation of xylene with CoMn2O4 as catalyst[J]. Chemical Industry and Engineering, 2021, 38(4): 25-36.
|
13 |
王玉亭, 任凯, 沈伯雄, 等. 燃煤烟气条件下锰铈基催化剂对邻二甲苯催化氧化[J]. 化工进展, 2020, 39(8): 3102-3109.
|
|
WANG Yuting, REN Kai, SHEN Boxiong, et al. MnCe based catalyst for o-xylene catalytic oxidation from coal-combustion flue gas[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3102-3109.
|
14 |
张烁, 吴卫红, 杨洋, 等. 老化对钴铈基催化剂催化氧化丙烷的影响[J]. 中国环境科学, 2021, 41(2): 614-621.
|
|
ZHANG Shuo, WU Weihong, YANG Yang, et al. Effect of aging on propane catalytic oxidation over Co-Ce catalyst[J]. China Environmental Science, 2021, 41(2): 614-621.
|
15 |
李梦翔, 周月, 刘明庆, 等. 沸石分子筛材料去除CVOCs的研究进展[J]. 现代化工, 2021, 41(5): 59-63.
|
|
LI Mengxiang, ZHOU Yue, LIU Mingqing, et al. Research progress in removing CVOCs by zeolite molecular sieve[J]. Modern Chemical Industry, 2021, 41(5): 59-63.
|
16 |
ZHAO H, DONG F, HAN W, et al. Study of morphology-dependent and crystal-plane effects of CeMnO x catalysts for 1,2-dichlorobenzene catalytic elimination[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18055-18064.
|
17 |
YANG S, ZHAO H, DONG F, et al. Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: a new concept of chlorine removal mechanism[J]. Molecular Catalysis, 2019, 463: 119-129.
|
18 |
CHEN J, CHEN X, YAN D, et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants[J]. Applied Catalysis B: Environmental, 2019, 250: 396-407.
|
19 |
徐源, 石瑞琦, 黄大俊, 等. 响应面法优化Co3O4制备及其光催化性能[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 74-79.
|
|
XU Yuan, SHI Ruiqi, HUANG Dajun, et al. Optimization of Co3O4 preparation and photocatalytic properties by response surface method[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5): 74-79.
|
20 |
彭旭, 陈际雨. 催化燃烧处理环己酮废气的响应面法优化[J]. 浙江化工, 2018, 49(4): 38-43.
|
|
PENG Xu, CHEN Jiyu. Process optimization of cyclohexanone waste gas by catalytic combustion based on response surface method[J]. Zhejiang Chemical Industry, 2018, 49(4): 38-43.
|
21 |
李钰琦, 王黎, 鲁逸飞, 等. 响应面法优化超临界Ir-Ta/Ti催化氧化处理焦化废水[J]. 现代化工, 2020, 40(5): 165-169, 175.
|
|
LI Yuqi, WANG Li, LU Yifei, et al. Optimization of Ir-Ta/Ti catalytic oxidation of coking wastewater in supercritical reaction by response surface methodology[J]. Modern Chemical Industry, 2020, 40(5): 165-169, 175.
|
22 |
马越, 霍晓东, 陶炜, 等. 基于铜基催化剂的苯催化氧化实验研究[J]. 燃烧科学与技术, 2019, 25(2): 154-160.
|
|
MA Yue, HUO Xiaodong, TAO Wei, et al. Experimental study on the catalytic oxidation of benzene compounds based on Cu-based catalysts[J]. Journal of Combustion Science and Technology, 2019, 25(2): 154-160.
|
23 |
YANG J, YE Z, WANG G, et al. Neuro-genetic machine learning framework accelerates the optimization of Ag/MnO x catalyst for total oxidation of toluene[J]. Applied Catalysis A: General, 2021, 622: 118221.
|
24 |
CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeO y into MnO x -based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835.
|
25 |
DU J, QU Z, DING C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Applied Surface Science, 2018, 433: 1025-1035.
|
26 |
LIN X, LI S, HE H, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102.
|
27 |
DONG Yuming, LI Kun, JIANG Pingping, et al. Simple hydrothermal preparation of α-, β-, and γ-MnO2 and phase sensitivity in catalytic ozonation[J]. RSC Advances, 2014, 4(74): 39167-39173.
|
28 |
LIU G, YUE R, JIA Y, et al. Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J]. Particuology, 2013, 11(4): 454-459.
|
29 |
HAN Yifan, CHEN Fengxi, ZHONG Ziyi, et al. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15[J]. The Journal of Physical Chemistry B, 2006, 110(48): 24450-24456.
|
30 |
KUMAR P, KUMAR P, KUMAR A, et al. Structural, morphological, electrical and dielectric properties of Mn doped CeO2 [J]. Journal of Alloys and Compounds, 2016, 672: 543-548.
|
31 |
CHANG Tian, CHEN Qingcai, FAN Hao, et al. Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn-Ce/HZSM-5 catalysts[J]. Catalysis Science & Technology, 2021, 11(11): 3746-3761.
|
32 |
WENG X, LONG Y, WANG W, et al. Structural effect and reaction mechanism of MnO2 catalysts in the catalytic oxidation of chlorinated aromatics[J]. Chinese Journal of Catalysis, 2019, 40(5): 638-646.
|
33 |
SEONG G, DEJHOSSEINI M, ADSCHIRI T. A kinetic study of catalytic hydrothermal reactions of acetaldehyde with cubic CeO2 nanoparticles[J]. Applied Catalysis A: General, 2018, 550: 284-296.
|
34 |
MAY Y, WANG W, HAN Y, et al. Insights into facet-dependent reactivity of Cu-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction[J]. Chinese Journal of Catalysis, 2020, 41(6): 1017-1027.
|
35 |
RONG S, ZHANG P, LIU F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446.
|
36 |
WANG Y, DENG W, WANG Y, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70.
|
37 |
刘森, 黄锐, 孙培永, 等. Mn/Ti-Zr复合氧化物催化苯甲酸甲酯选择性加氢[J]. 精细化工, 2021, 38(4): 782-789.
|
|
LIU Sen, HUANG Rui, SUN Peiyong, et al. Selective hydrogenation of methyl benzoate catalyzed by Mn/Ti-Zr mixed oxides[J]. Fine Chemicals, 2021, 38(4): 782-789.
|
38 |
凌昊, 孟捷, 陶进国, 等. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101.
|
|
LING Hao, MENG Jie, TAO Jinguo, et al. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101.
|
39 |
WANG Jinlong, ZHANG Pengyi, LI Jinge, et al. Room-temperature oxidation of formaldehyde by layered manganese oxide: effect of water[J]. Environmental Science & Technology, 2015, 49(20): 12372-12379.
|
40 |
吴彦丽, 王慧, 吴少华, 等. 低温催化氧化氯苯类有机物的催化剂研究进展[J]. 化工新型材料, 2021, 49(1): 243-246.
|
|
WU Yanli, WANG Hui, WU Shaohua, et al. Research progress on catalyst for low-temperature oxidation of chlorobenzene[J]. New Chemical Materials, 2021, 49(1): 243-246.
|
41 |
殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
|
|
YIN Ke, CHEN Ruiyang, LIU Zhiming. Catalytic removal of toluene over manganese-based oxide catalysts[J]. Materials Reports, 2020, 34(23): 23051-23056.
|
42 |
李树娜, 宋佩, 张金丽, 等. CeO2-MnO x 催化剂形貌对低浓度甲烷催化燃烧反应性能的影响[J]. 燃料化学学报, 2018, 46(5): 615-624.
|
|
LI Shuna, SONG Pei, ZHANG Jinli, et al. Morphological effect of CeO2-MnO x catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 615-624.
|
43 |
彭超, 于迪, 王斓懿, 等. 铈基氧化物催化燃烧柴油机炭烟颗粒的性能及机理研究进展[J]. 中国科学: 化学, 2021, 51(8): 1029-1059.
|
|
PENG Chao, YU Di, WANG Lanyi, et al. Recent advances in performances and mechanisms of cerium-based oxide catalysts for catalytic combustion of soot particles released from diesel engines[J]. Scientia Sinica Chimica), 2021, 51(8): 1029-1059.
|
44 |
权燕红, 苗超, 李涛, 等. 不同制备方法对氧化铈结构及甲苯催化燃烧性能的影响[J]. 燃料化学学报, 2021, 49(2): 211-219.
|
|
QUAN Yanhong, MIAO Chao, LI Tao, et al. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 211-219.
|