Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4530-4543.DOI: 10.16085/j.issn.1000-6613.2021-1940
• Resources and environmental engineering • Previous Articles Next Articles
WANG Yue1,2(), ZHENG Xiaohong2,3(), TAO Tianyi2, LIU Xiuqing4, LI Li1(), SUN Zhi2
Received:
2021-09-09
Revised:
2021-12-20
Online:
2022-08-22
Published:
2022-08-25
Contact:
ZHENG Xiaohong,LI Li
王玥1,2(), 郑晓洪2,3(), 陶天一2, 刘秀庆4, 李丽1(), 孙峙2
通讯作者:
郑晓洪,李丽
作者简介:
王玥(1997—),女,硕士研究生,研究方向为锂离子电池资源化回收。E-mail:基金资助:
CLC Number:
WANG Yue, ZHENG Xiaohong, TAO Tianyi, LIU Xiuqing, LI Li, SUN Zhi. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4530-4543.
王玥, 郑晓洪, 陶天一, 刘秀庆, 李丽, 孙峙. 废锂离子电池正极材料中锂元素选择性回收的研究进展[J]. 化工进展, 2022, 41(8): 4530-4543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1940
国家 | 储量/104t |
---|---|
阿根廷 | 1930 |
玻利维亚 | 2100 |
智利 | 960 |
澳大利亚 | 640 |
美国 | 790 |
中国 | 510 |
刚果 | 300 |
国家 | 储量/104t |
---|---|
阿根廷 | 1930 |
玻利维亚 | 2100 |
智利 | 960 |
澳大利亚 | 640 |
美国 | 790 |
中国 | 510 |
刚果 | 300 |
企业 | 所属国家 | 回收工艺 | 回收产品 |
---|---|---|---|
AEA | 英国 | 电化学 | 氧化钴、氢氧化锂 |
Recupyl | 法国 | 湿法 | 氢氧化钴、碳酸锂/磷酸锂 |
Accurec | 德国 | 火法 | 钴基合金、富锂残渣 |
Umicore | 比利时 | 火法 | 高值合金(钴/镍/铜)、富锂残渣 |
Inmetco | 美国 | 火法 | 钴基合金 |
企业 | 所属国家 | 回收工艺 | 回收产品 |
---|---|---|---|
AEA | 英国 | 电化学 | 氧化钴、氢氧化锂 |
Recupyl | 法国 | 湿法 | 氢氧化钴、碳酸锂/磷酸锂 |
Accurec | 德国 | 火法 | 钴基合金、富锂残渣 |
Umicore | 比利时 | 火法 | 高值合金(钴/镍/铜)、富锂残渣 |
Inmetco | 美国 | 火法 | 钴基合金 |
电池 | 浸出试剂 | 温度/℃ | 时间/min | 浸出效率 | 参考文献 |
---|---|---|---|---|---|
LiCoO2 | 磷酸+葡萄糖 | 80 | 120 | Li 100%,Co 98% | [ |
LiNi x Co y Mn z O2 | 硫酸+亚硫酸氢钠 | 95 | 240 | Li 96.7%,Co 91.6%,Ni 96.4%,Mn 87.9% | [ |
LiCoO2 | 柠檬酸+过氧化氢 | 90 | 60 | Li 100%,Co 99% | [ |
LiNi x Co y Mn z O2 | 甲酸+过氧化氢 | 60 | 120 | Li 100%,Co 85%,Ni 85%,Mn 85% | [ |
LiCoO2 | 盐酸 | 80 | 90 | Li 100%,Co 100% | [ |
电池 | 浸出试剂 | 温度/℃ | 时间/min | 浸出效率 | 参考文献 |
---|---|---|---|---|---|
LiCoO2 | 磷酸+葡萄糖 | 80 | 120 | Li 100%,Co 98% | [ |
LiNi x Co y Mn z O2 | 硫酸+亚硫酸氢钠 | 95 | 240 | Li 96.7%,Co 91.6%,Ni 96.4%,Mn 87.9% | [ |
LiCoO2 | 柠檬酸+过氧化氢 | 90 | 60 | Li 100%,Co 99% | [ |
LiNi x Co y Mn z O2 | 甲酸+过氧化氢 | 60 | 120 | Li 100%,Co 85%,Ni 85%,Mn 85% | [ |
LiCoO2 | 盐酸 | 80 | 90 | Li 100%,Co 100% | [ |
工艺 | 优点 | 缺点 |
---|---|---|
火法 | 工艺流程短(焙烧+浸出+沉淀),锂回收率高(≥90%),选择性高(≥99%),提锂条件温和(常温浸出) | 能耗高(焙烧温度普遍大于500℃),环境风险高(CO2、SO x 、NO x 、HCl尾气排放),高温下锂易以气态形式挥发,易损失 |
湿法 | 工艺流程短(浸出+沉淀),锂回收率高(≥92%),浸出温度低(30~90℃),能耗低,工艺流程简单,易于工业化应用 | 易造成其他金属的浸出,选择性低;药剂消耗量大,需消耗大量的酸/碱,环境风险高(H2SO4、HCl、HNO3酸雾排放,高盐废水排放) |
机械化学法 | 工艺流程短(焙烧+浸出+沉淀),锂回收率高(≥92%),选择性高(≥99%),提锂条件温和(常温浸出) | 设备规模化受限,药剂消耗量大,需添加大量的助磨剂,工艺流程会产生高盐废水 |
电化学法 | 工艺流程短(浸出+沉淀),锂回收率高(≥98%),选择性高(≥99%),提锂条件温和(常温浸出),无化学试剂消耗 | 设备规模化受限,电能消耗较高 |
工艺 | 优点 | 缺点 |
---|---|---|
火法 | 工艺流程短(焙烧+浸出+沉淀),锂回收率高(≥90%),选择性高(≥99%),提锂条件温和(常温浸出) | 能耗高(焙烧温度普遍大于500℃),环境风险高(CO2、SO x 、NO x 、HCl尾气排放),高温下锂易以气态形式挥发,易损失 |
湿法 | 工艺流程短(浸出+沉淀),锂回收率高(≥92%),浸出温度低(30~90℃),能耗低,工艺流程简单,易于工业化应用 | 易造成其他金属的浸出,选择性低;药剂消耗量大,需消耗大量的酸/碱,环境风险高(H2SO4、HCl、HNO3酸雾排放,高盐废水排放) |
机械化学法 | 工艺流程短(焙烧+浸出+沉淀),锂回收率高(≥92%),选择性高(≥99%),提锂条件温和(常温浸出) | 设备规模化受限,药剂消耗量大,需添加大量的助磨剂,工艺流程会产生高盐废水 |
电化学法 | 工艺流程短(浸出+沉淀),锂回收率高(≥98%),选择性高(≥99%),提锂条件温和(常温浸出),无化学试剂消耗 | 设备规模化受限,电能消耗较高 |
1 | 黄健航, 王永刚, 夏永姚. 新型储能化学电源研究进展[J]. 电源技术, 2020, 44(6): 793-798. |
HUANG Jianhang, WANG Yonggang, XIA Yongyao. Research progress of new energy storage electrochemical power sources[J]. Chinese Journal of Power Sources, 2020, 44(6): 793-798. | |
2 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079. |
3 | ARSHAD F, LI L, AMIN K, et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13527-13554. |
4 | SANTANA I L, MOREIRA T F M, LELIS M F F, et al. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent[J]. Materials Chemistry and Physics, 2017, 190: 38-44. |
5 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
6 | 罗明增, 周柯, 吴珏, 等. 二次电池储能机理的电化学谱学研究进展[J]. 厦门大学学报(自然科学版), 2020, 59(5): 726-746. |
LUO Mingzeng, ZHOU Ke, WU Jue, et al. Research progress of electrochemical spectroscopy on energy storage mechanism of rechargeable batteries[J]. Journal of Xiamen University (Natural Science), 2020, 59(5): 726-746. | |
7 | RAZMJOU A, ASADNIA M, HOSSEINI E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019, 10: 5793. |
8 | YANG S X, ZHANG F, DING H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
9 | ZENG X L, LI J H. Emerging anthropogenic circularity science: principles, practices, and challenges[J]. iScience, 2021, 24(3): 102237. |
10 | The United States Geological Survey(USGS). Mineral commodity summaries [EB/OL]. [2021-08-12]. . |
11 | 韩佳欢, 乜贞, 方朝合, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61-66. |
HAN Jiahuan, NIE Zhen, FANG Chaohe, et al. Analysis of existing circumstance of supply and demand on China’s lithium resources[J]. Inorganic Chemicals Industry, 2021, 53(12): 61-66. | |
12 | 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7. |
MA Zhe, LI Jianwu. Analysis of China’s lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1-7. | |
13 | 齐帅军, 肖克炎, 丁建华, 等. 中国锂矿资源分布和潜力分析[J]. 矿床地质, 2014, 33(S1): 809-810. |
QI Shuaijun, XIAO Keyan, DING Jianhua, et al. Analysis of distribution and potential on China’s lithium resources[J]. Mineral Deposits, 2014, 33(S1): 809-810. | |
14 | ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15(5): 1183. |
15 | DUNN J B, GAINES L, KELLY J C, et al. Life cycle analysis summary for automotive lithium-ion battery production and recycling[M]. Cham: Springer International Publishing, 2016: 73-79. |
16 | HOSSAIN R, KUMAR U, SAHAJWALLA V. Selective thermal transformation of value added cobalt from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2021, 293: 126140. |
17 | HU J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199. |
18 | HU X F, MOUSA E, TIAN Y, et al. Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction-Part I: A laboratory-scale study[J]. Journal of Power Sources, 2021, 483: 228936. |
19 | ATIA T A, ELIA G, HAHN R, et al. Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: towards zero-waste process and metal recycling in advanced batteries[J]. Journal of Energy Chemistry, 2019, 35: 220-227. |
20 | 黎华玲, 陈永珍, 宋文吉, 等. 湿法回收退役三元锂离子电池有价金属的研究进展[J]. 化工进展, 2019, 38(2): 921-932. |
LI Hualing, CHEN Yongzhen, SONG Wenji, et al. Research progress on the recovery of valuable metals in retired LiNi x Co y Mn z O2 batteries by wet process[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 921-932. | |
21 | GUO M M, LI K, LIU L Z, et al. Resource utilization of spent ternary lithium-ions batteries: synthesis of highly active manganese-based perovskite catalyst for toluene oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 268-275. |
22 | FAN E S, LI L, ZHANG X X, et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11029-11035. |
23 | WANG M M, TAN Q Y, HUANG Q F, et al. Converting spent lithium cobalt oxide battery cathode materials into high-value products via a mechanochemical extraction and thermal reduction route[J]. Journal of Hazardous Materials, 2021, 413: 125222. |
24 | LI Z, HE L H, ZHU Y F, et al. A green and cost-effective method for production of LiOH from spent LiFePO4 [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15915-15926. |
25 | LI Z, LIU D F, XIONG J C, et al. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis[J]. Waste Management, 2020, 107: 1-8. |
26 | LYU H, HUANG H J, HUANG C, et al. Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries[J]. Applied Catalysis B: Environmental, 2021, 283: 119634. |
27 | GEORGI-MASCHLER T, FRIEDRICH B, WEYHE R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
28 | LIU C W, LIN J, CAO H B, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. |
29 | ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. |
30 | XIAO J F, LI J, XU Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-131. |
31 | QIU R J, HUANG Z, ZHENG J Y, et al. Energy models and the process of fluid-magnetic separation for recovering cobalt micro-particles from vacuum reduction products of spent lithium ion batteries[J]. Journal of Cleaner Production, 2021, 279: 123230. |
32 | TANG Y Q, XIE H W, ZHANG B L, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97: 140-148. |
33 | DIAZ F, WANG Y, MOORTHY T, et al. Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in microwave-assisted pyrolysis[J]. Metals, 2018, 8(8): 565. |
34 | ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384: 121487. |
35 | ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2020, 396: 122740. |
36 | WU Z, ZHU H, BI H, et al. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments[J]. Waste Management & Research, 2021, 39(4): 607-619. |
37 | LOMBARDO G, EBIN B, FOREMAN M R St J, et al. Chemical transformations in Li-ion battery electrode materials by carbothermic reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13668-13679. |
38 | LIU P C, XIAO L, CHEN Y F, et al. Recovering valuable metals from LiNi x Co y Mn1- x- y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. |
39 | WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 12222-12230. |
40 | WANG W Q, ZHANG Y C, ZHANG L, et al. Cleaner recycling of cathode material by in situ thermite reduction[J]. Journal of Cleaner Production, 2020, 249: 119340. |
41 | YANG C, ZHANG J L, YU B Y, et al. Recovery of valuable metals from spent LiNi x Co y Mn z O2 cathode material via phase transformation and stepwise leaching[J]. Separation and Purification Technology, 2021, 267: 118609. |
42 | LIU F P, PENG C, MA Q X, et al. Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries[J]. Separation and Purification Technology, 2021, 259: 118181. |
43 | LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNi x Co y Mn z O2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1323-1332. |
44 | SAIT H H, SALEMA A A. Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies[J]. Fuel, 2015, 161: 239-247. |
45 | MAO J K, LI J, XU Z M. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-929. |
46 | XIAO J F, LI J, XU Z M. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy[J]. Environmental Science & Technology, 2017, 51(20): 11960-11966. |
47 | LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. |
48 | ZHANG H L, XU J Q, ZHANG J J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J]. Frontiers in Materials, 2019, 6: 309. |
49 | XIAO J F, NIU B, XU Z M. Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent[J]. Journal of Hazardous Materials, 2021, 418: 126319. |
50 | YANG C, ZHANG J L, CAO Z H, et al. Sustainable and facile process for lithium recovery from spent LiNi x Co y Mn z O2 cathode materials via selective sulfation with ammonium sulfate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15732-15739. |
51 | LIN J, LIU C W, CAO H B, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21): 5904-5913. |
52 | LIN J, LI L, FAN E S, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489. |
53 | DANG H, WANG B F, CHANG Z D, et al. Recycled lithium from simulated pyrometallurgical slag by chlorination roasting[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13160-13167. |
54 | PENG C, LIU F P, WANG Z L, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system[J]. Journal of Power Sources, 2019, 415: 179-188. |
55 | PRADHAN N, NAYAK R R, PRIYADARSHINI E, et al. Application of iron reducing bacteria for recovery of nickel and cobalt chromite overburden [C]//ⅩⅩⅥ International Mineral Processing Congress- IMPC 2012. India: 2012: 24-28. |
56 | 石剑锋, 王志兴, 胡启阳, 等. 硫酸氢铵硫酸化焙烧法红土镍矿提取镍钴[J]. 中国有色金属学报, 2013, 23(2): 510-515. |
SHI Jianfeng, WANG Zhixing, HU Qiyang, et al. Recovery of nickel and cobalt from nickel laterite ore by sulfation roasting method using ammonium bisulfate[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 510-515. | |
57 | KAR B B, SWAMY Y V. Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting[J]. Minerals Engineering, 2000, 13(14/15): 1635-1640. |
58 | PAULINO J F, BUSNARDO N G, AFONSO J C. Recovery of valuable elements from spent Li-batteries[J]. Journal of Hazardous Materials, 2008, 150(3): 843-849. |
59 | WANG D H, ZHANG X D, CHEN H J, et al. Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching[J]. Minerals Engineering, 2018, 126: 28-35. |
60 | XU P, LIU C W, ZHANG X H, et al. Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2271-2279. |
61 | FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150. |
62 | XIAO J F, NIU B, SONG Q M, et al. Novel targetedly extracting lithium: an environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery[J]. Journal of Hazardous Materials, 2021, 404: 123947. |
63 | HUANG Y, SHAO P H, YANG L M, et al. Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2 [J]. Resources, Conservation and Recycling, 2021, 174: 105757. |
64 | YAO Y L, ZHU M Y, ZHAO Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
65 | ZHANG P W, YOKOYAMA T, ITABASHI O, et al. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries[J]. Hydrometallurgy, 1998, 47(2/3): 259-271. |
66 | GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
67 | YAO L, YAO H S, XI G X, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D,L-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. |
68 | SUN L, QIU K Q. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management, 2012, 32(8): 1575-1582. |
69 | FERREIRA D A, PRADOS L M Z, MAJUSTE D, et al. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2009, 187(1): 238-246. |
70 | PARK O K, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel?[J]. Energy & Environmental Science, 2011, 4(5): 1621. |
71 | KUMAR J, NEIBER R R, PARK J, et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: strategies for highly selective lithium recovery[J]. Chemical Engineering Journal, 2021: 133993. |
72 | LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
73 | LI L, GE J, CHEN R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
74 | LYU W, WANG Z H, ZHENG X H, et al. Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5165-5174. |
75 | MENG Q, ZHANG Y J, DONG P. Use of glucose as reductant to recover Co from spent lithium ions batteries[J]. Waste Management, 2017, 64: 214-218. |
76 | MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
77 | LI L, BIAN Y F, ZHANG X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371. |
78 | GAO W F, ZHANG X H, ZHENG X H, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669. |
79 | TAKACOVA Z, HAVLIK T, KUKURUGYA F, et al. Cobalt and lithium recovery from active mass of spent Li-ion batteries: theoretical and experimental approach[J]. Hydrometallurgy, 2016, 163: 9-17. |
80 | CHEN X P, LUO C B, ZHANG J X, et al. Sustainable recovery of metals from spent lithium-ion batteries: a green process[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3104-3113. |
81 | ZENG X L, LI J H, SHEN B Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-118. |
82 | LI L, LU J, REN Y, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. |
83 | YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
84 | CHEN L L, CHAO Y H, LI X W, et al. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries[J]. Green Chemistry, 2021, 23(5): 2177-2184. |
85 | NIINAE M, KOMATSU N, NAKAHIRO Y, et al. Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solutions using ammonium thiosulfate and ammonium sulfite as reducing agents[J]. Hydrometallurgy, 1996, 40(1/2): 111-121. |
86 | ZHENG X H, GAO W F, ZHANG X H, et al. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
87 | GUO Y G, LI Y G, LOU X Y, et al. Improved extraction of cobalt and lithium by reductive acid from spent lithium-ion batteries via mechanical activation process[J]. Journal of Materials Science, 2018, 53(19): 13790-13800. |
88 | WANG M M, TAN Q Y, LI J H. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries[J]. Environmental Science & Technology, 2018, 52(22): 13136-13143. |
89 | TAN Q Y, LI J H. Recycling metals from wastes: a novel application of mechanochemistry[J]. Environmental Science & Technology, 2015, 49(10): 5849-5861. |
90 | XIE J Y, HUANG K Y, NIE Z L, et al. An effective process for the recovery of valuable metals from cathode material of lithium-ion batteries by mechanochemical reduction[J]. Resources, Conservation and Recycling, 2021, 168: 105261. |
91 | LIU K, LIU L L, TAN Q Y, et al. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation[J]. Green Chemistry, 2021, 23(3): 1344-1352. |
92 | LIU K, TAN Q Y, LIU L L, et al. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution[J]. Environmental Science & Technology, 2019, 53(16): 9781-9788. |
93 | WANG M M, TAN Q Y, LIU L L, et al. Selective regeneration of lithium from spent lithium-ion batteries using ionic substitution stimulated by mechanochemistry[J]. Journal of Cleaner Production, 2021, 279: 123612. |
94 | YU J Z, WANG X, ZHOU M Y, et al. A redox targeting-based material recycling strategy for spent lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(9): 2672-2677. |
95 | LIU K, YANG S L, LAI F Y, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4767-4776. |
96 | GMAR S, CHAGNES A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources[J]. Hydrometallurgy, 2019, 189: 105124. |
97 | CHAN K H, MALIK M, AZIMI G. Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis[J]. Resources, Conservation and Recycling, 2022, 178: 106076. |
98 | LYU W, RUAN D S, ZHENG X H, et al. One-step recovery of valuable metals from spent lithium-ion batteries and synthesis of persulfate through paired electrolysis[J]. Chemical Engineering Journal, 2021, 421: 129908. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[5] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[6] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[9] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[12] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[13] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[14] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[15] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |