Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3534-3544.DOI: 10.16085/j.issn.1000-6613.2021-1708
• Energy processes and technology • Previous Articles Next Articles
ZHANG Xincheng1,2(), HE Lin1,2,3(), SUI Hong1,2, LI Xingang1,2,3
Received:
2021-08-11
Revised:
2021-11-24
Online:
2022-07-23
Published:
2022-07-25
Contact:
HE Lin
张辛铖1,2(), 何林1,2,3(), 隋红1,2, 李鑫钢1,2,3
通讯作者:
何林
作者简介:
张辛铖(1996—),男,硕士研究生,研究方向为重质油水体系分离过程。E-mail:基金资助:
CLC Number:
ZHANG Xincheng, HE Lin, SUI Hong, LI Xingang. Demulsification process and enhancement by viscosity reduction for water-in-heavy oil emulsions[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544.
张辛铖, 何林, 隋红, 李鑫钢. 重质油包水乳液破乳过程及降黏强化机制[J]. 化工进展, 2022, 41(7): 3534-3544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1708
20℃密度 /g·cm-3 | 20℃黏度 /mPa·s | 四组分质量分数/% | |||
---|---|---|---|---|---|
饱和分 | 芳香分 | 胶质 | 沥青质 | ||
0.933 | 25500 | 27.06 | 26.61 | 41.61 | 4.72 |
20℃密度 /g·cm-3 | 20℃黏度 /mPa·s | 四组分质量分数/% | |||
---|---|---|---|---|---|
饱和分 | 芳香分 | 胶质 | 沥青质 | ||
0.933 | 25500 | 27.06 | 26.61 | 41.61 | 4.72 |
组分名称 | Mn | Mw | Mw/Mn | 元素分析(质量分数)% | ||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
重质油 | 494 | 1936 | 3.92 | 85.28 | 10.05 | 3.57 | 0.68 | 0.42 |
饱和分 | 390 | 539 | 1.38 | 85.09 | 11.60 | 3.23 | 0.08 | 0 |
芳香分 | 338 | 850 | 2.51 | 86.36 | 9.37 | 3.40 | 0.33 | 0.53 |
胶质 | 546 | 2899 | 5.31 | 85.44 | 8.57 | 4.08 | 1.42 | 0.49 |
沥青质 | 2385 | 14097 | 5.91 | 78.14 | 7.35 | 3.84 | 0.95 | 9.72 |
组分名称 | Mn | Mw | Mw/Mn | 元素分析(质量分数)% | ||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
重质油 | 494 | 1936 | 3.92 | 85.28 | 10.05 | 3.57 | 0.68 | 0.42 |
饱和分 | 390 | 539 | 1.38 | 85.09 | 11.60 | 3.23 | 0.08 | 0 |
芳香分 | 338 | 850 | 2.51 | 86.36 | 9.37 | 3.40 | 0.33 | 0.53 |
胶质 | 546 | 2899 | 5.31 | 85.44 | 8.57 | 4.08 | 1.42 | 0.49 |
沥青质 | 2385 | 14097 | 5.91 | 78.14 | 7.35 | 3.84 | 0.95 | 9.72 |
甲苯质量 分数/% | 扩散系数/10-10m2·s-1 | |||||
---|---|---|---|---|---|---|
SARA | 增长率/% | 沥青质 | 增长率/% | 胶质 | 增长率/% | |
0 | 0.210 | — | 0.135 | — | 0.098 | — |
4 | 0.266 | 26.7 | 0.155 | 14.8 | 0.141 | 43.9 |
8 | 0.300 | 42.9 | 0.180 | 33.3 | 0.160 | 63.3 |
12 | 0.333 | 58.6 | 0.237 | 75.6 | 0.233 | 137.8 |
16 | 0.387 | 84.3 | 0.352 | 160.7 | 0.263 | 168.4 |
20 | 0.488 | 132.4 | 0.435 | 222.2 | 0.332 | 238.8 |
甲苯质量 分数/% | 扩散系数/10-10m2·s-1 | |||||
---|---|---|---|---|---|---|
SARA | 增长率/% | 沥青质 | 增长率/% | 胶质 | 增长率/% | |
0 | 0.210 | — | 0.135 | — | 0.098 | — |
4 | 0.266 | 26.7 | 0.155 | 14.8 | 0.141 | 43.9 |
8 | 0.300 | 42.9 | 0.180 | 33.3 | 0.160 | 63.3 |
12 | 0.333 | 58.6 | 0.237 | 75.6 | 0.233 | 137.8 |
16 | 0.387 | 84.3 | 0.352 | 160.7 | 0.263 | 168.4 |
20 | 0.488 | 132.4 | 0.435 | 222.2 | 0.332 | 238.8 |
甲苯质量分数/% | 沥青质-胶质/kJ·mol-1 | 沥青质-芳香分/kJ·mol-1 | 胶质-芳香分/kJ·mol-1 | 体系总能量/kJ·mol-1 |
---|---|---|---|---|
0 | 10.41 | 6.47 | 11.01 | 5.26×104 |
4 | 7.17 | 6.40 | 10.75 | 4.77×104 |
8 | 6.62 | 6.12 | 10.61 | 4.61×104 |
12 | 6.29 | 5.92 | 10.42 | 4.52×104 |
16 | 6.05 | 5.83 | 10.38 | 4.49×104 |
20 | 5.92 | 5.74 | 10.35 | 4.39×104 |
甲苯质量分数/% | 沥青质-胶质/kJ·mol-1 | 沥青质-芳香分/kJ·mol-1 | 胶质-芳香分/kJ·mol-1 | 体系总能量/kJ·mol-1 |
---|---|---|---|---|
0 | 10.41 | 6.47 | 11.01 | 5.26×104 |
4 | 7.17 | 6.40 | 10.75 | 4.77×104 |
8 | 6.62 | 6.12 | 10.61 | 4.61×104 |
12 | 6.29 | 5.92 | 10.42 | 4.52×104 |
16 | 6.05 | 5.83 | 10.38 | 4.49×104 |
20 | 5.92 | 5.74 | 10.35 | 4.39×104 |
1 | SANTOS R G, LOH W, BANNWART A C, et al. An overview of heavy oil properties and its recovery and transportation methods[J]. Brazilian Journal of Chemical Engineering, 2014, 31(3): 571-590. |
2 | HE L, LIN F, LI X G, et al. Interfacial sciences in unconventional petroleum production: from fundamentals to applications[J]. Chemical Society Reviews, 2015, 44(15): 5446-5494. |
3 | 王君妍, 白云, 马国强, 等. 重质油-固体系分离与资源化回收研究进展[J]. 化工进展, 2019, 38(1): 649-663. |
WANG Junyan, BAI Yun, MA Guoqiang, et al. Recent advances in separation and recovery of oil from heavy oil-solid systems[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 649-663. | |
4 | NIU Z, MA X M, MANICA R, et al. Molecular destabilization mechanism of asphaltene model compound C5Pe interfacial film by EO-PO copolymer: experiments and MD simulation[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10501-10508. |
5 | ZHANG L Y, XU Z H, MASLIYAH J H. Langmuir and Langmuir-Blodgett films of mixed asphaltene and a demulsifier[J]. Langmuir, 2003, 19(23): 9730-9741. |
6 | KIRAN S K, NG S, ACOSTA E J. Impact of asphaltenes and naphthenic amphiphiles on the phase behavior of Solvent-Bitumen-Water systems[J]. Energy & Fuels, 2011, 25(5): 2223-2231. |
7 | GOUAL L, SEDGHI M, ZENG H, et al. On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation[J]. Fuel, 2011, 90(7): 2480-2490. |
8 | HOEPFNER M P, VILAS BÔAS FÁVERO C, HAJI-AKBARI N, et al. The fractal aggregation of asphaltenes[J]. Langmuir, 2013, 29(28): 8799-8808. |
9 | SPIECKER P M, GAWRYS K L, TRAIL C B, et al. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220(1/2/3): 9-27. |
10 | KUAN Y H, WU F H, CHEN G B, et al. Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends[J]. Energy, 2020, 201: 117559. |
11 | YANG F, TCHOUKOV P, PENSINI E, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1: Interfacial behaviors[J]. Energy & Fuels, 2014, 28(11): 6897-6904. |
12 | YANG F, TCHOUKOV P, DETTMAN H, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 2: Molecular representations and molecular dynamics simulations[J]. Energy & Fuels, 2015, 29(8): 4783-4794. |
13 | QIAO P Q, HARBOTTLE D, TCHOUKOV P, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 3. Effect of solvent aromaticity[J]. Energy & Fuels, 2017, 31(9): 9179-9187. |
14 | HOU J, FENG X H, MASLIYAH J, et al. Understanding interfacial behavior of ethylcellulose at the water-diluted bitumen interface[J]. Energy & Fuels, 2012, 26(3): 1740-1745. |
15 | FAN Y R, SIMON S, SJÖBLOM J. Interfacial shear rheology of asphaltenes at oil-water interface and its relation to emulsion stability: influence of concentration, solvent aromaticity and nonionic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1/2/3): 120-128. |
16 | FAN Y R, SIMON S, SJÖBLOM J. Chemical destabilization of crude oil emulsions: effect of nonionic surfactants as emulsion inhibitors[J]. Energy & Fuels, 2009, 23(9): 4575-4583. |
17 | MA J, LI X G, ZHANG X Y, et al. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions[J]. Chemical Engineering Journal, 2020, 385: 123826. |
18 | MA J, YANG Y L, LI X G, et al. Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: role of hydrogen bonding reconstructing[J]. Fuel, 2021, 297(8): 120763. |
19 | ASTM International. Standard test method for determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products: [S]. 2017. |
20 | 中华人民共和国国家质量监督检验检疫总局, 中国家标准化管理委员会. 原油水含量的测定 蒸馏法: [S]. 北京: 中国标准出版社, 2006. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Crude petroleum determination of water—Distillation method: [S]. Beijing: Standards Press of China, 2006. | |
21 | ALVES R S, MAIA D L H, FERNANDES F A N, et al. Synthesis and application of castor oil maleate and castor oil maleate-styrene copolymers as demulsifier for water-in-oil emulsions[J]. Fuel, 2020, 269: 117429. |
22 | NIKKHAH M, TOHIDIAN T, RAHIMPOUR M R, et al. Efficient demulsification of water-in-oil emulsion by a novel nano-titania modified chemical demulsifier[J]. Chemical Engineering Research and Design, 2015, 94: 164-172. |
23 | LI X G, WANG J Y, HE L, et al. Ionic liquid-assisted solvent extraction for unconventional oil recovery: computational simulation and experimental tests[J]. Energy & Fuels, 2016, 30(9): 7074-7081. |
24 | FRAGA A K DA, OLIVEIRA P F, OLIVEIRA L F S, et al. Evaluation of nanoemulsions based on silicone polyethers for demulsification of asphaltene model emulsions[J]. Journal of Applied Polymer Science, 2016, 133(44): 44174-44182. |
25 | ZHANG L F, HE G J, YE D F, et al. Methacrylated hyperbranched polyglycerol as a high-efficiency demulsifier for oil-in-water emulsions[J]. Energy & Fuels, 2016, 30(11): 9939-9946. |
26 | LI X G, MA J, BIAN R Z, et al. Novel polyether for efficient demulsification of interfacially active asphaltene-stabilized water-in-oil emulsions[J]. Energy & Fuels, 2020, 34(3): 3591-3600. |
27 | 成琛, 王飞, 刘英杰, 等. 一种石蜡基原油低温破乳剂的合成研究[J]. 现代化工, 2017, 37(4): 67-70. |
CHENG Chen, WANG Fei, LIU Yingjie, et al. Synthesis of a paraffin-based low-temperature crude oil demulsifier[J]. Modern Chemical Industry, 2017, 37(4): 67-70. | |
28 | KÄRGER J. Straightforward derivation of the long-time limit of the mean-square displacement in one-dimensional diffusion[J]. Physical Review A, 1992, 45(6): 4173-4174. |
29 | NORDGÅRD E L, SØRLAND G, SJÖBLOM J. Behavior of asphaltene model compounds at W/O interfaces[J]. Langmuir, 2010, 26(4): 2352-2360. |
30 | ROUX B. The calculation of the potential of mean force using computer simulations[J]. Computer Physics Communications, 1995, 91(1/2/3): 275-282. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[3] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[4] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[5] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[6] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[7] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[8] | YANG Juanjuan, HE Lin, HE Changqing, LI Xingang, SUI Hong. Treatment of oily sludge through multiphase compound conditioning and demulsification separation process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 614-623. |
[9] | LI Songtao, ZHAO Jin, ZHANG Lifeng. Preparation of hyperbranched poly(amido amine) and its application to demulsification of oil-in-water emulsions [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 401-408. |
[10] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[11] | ZHANG Hua, LIU Guangquan, ZHANG Xiaofei, LUO Zhen. Stability analysis and demulsification treatment for desalter effluent [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5047-5054. |
[12] | FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253. |
[13] | LI Yanping, YAN Dazhou, YANG Tao, WEN Guosheng, HAN Zhicheng. Removal of methylchlorosilane in silicon-based electron gas by molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4375-4385. |
[14] | JIANG Shengkun, HAN Bo, ZHAO Xin, YU Wanhe, LUO Guangsheng, DENG Jian, LIU Guangqi, WANG Jingqi, WANG Jinbo. Preparation of mononitrotoluene by continuous adiabatic nitration of excess toluene in microreactor [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2910-2914. |
[15] | LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |